’f

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

DATE: March 29, 1979
ﬁh\TO: R & D Personnel
FROM: Bradford E. Hampson
SUBJECT: Specifications for‘PRIMOS Condition Mechanism

REFERENCE: None

Abstract

6? PE-T-468, Rev. 2 documents the PRIMOS Condition Handling Mechanism.

Both user-level and implementation-level information is included. The
Condition Mechanism represents a major departure from prior methods of
handling runtime errors in PRIMOS.

-

&

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

Table of Contents

1 Introduction to the Condition Mechanism......eeeeeeeeveoascsoeocsses 3
2 On-UnitS --------------------------------- s 86 06 6 0 0 8 & ® @ 6 5 6 6 06 6 06 5 0 86 0 % e s 3
3 Invocation of On-Units...... s e s eseacececsseaceaseacneeccosrseans S
4 Possible Actions of an On=-Unit....cceireieeveeroacensons crececccnen 4
5 Using the Condition Mechanism from Fortran..... e e s eescesssesssasena 5
5.1 Datatype Incompatibilities...veeeertseersoneceecneencecansnons ..6
5.2 Interfaces for NonlocCal GOLO' S...eeeeeeeeoocearoossossoasosssas 6
6 Default On-Units and Cleanup On-Units.....ceceeeeeenens cerrss e 7
7 System Primitive Interfaces to the Condition Mechanism............. 8
8 Data Structure FormatbS..eeeeeeeeeeeeeceeeacaccasonns e e cesenassl
8.1 The Condition Frame Header (CFH)......... Ceseesseesecnnecennean 21
8.2 The Extended Stack Frame Header......ioeeeeeeeeoncsosassnnsonasns 25
8.3 The Standard Fault Frame Header.....eeeseoesoceocsonsncnssnces 27
8.4 The On-Unit Descriptor BloCK...eeeeiieieoeeooossossassscssosos 30
9 System-Defined Conditions............ e s eeectsscensennes cestsannne 31
10 The Crawlout Mechanism..... cecesecesesenns cee s e e eesseenesesenans 42
11 Internal InterfacesS.....ciceeeeescossccscecsscanoscscscnsssonssansos uy
1107 CRAWL ot tttieteeeecneanenansosaosasoasasassasasnass Cereeaas 4y
117.2 CSTAKS ... v eneeennnnn et e s esececssseeeseessesecsaeesttenean 45
11’3 FATAL ® & & © & O 6 0 6 P O O S o " " 0 ® @ & &6 6 & & 0 ¢ 5 B " * 9 O ® & © & 5 & ® & & & s o 0 0 ® o o o a o u6
11,8 FNONUS. ..t eeeeteeonenenennnsenoasanss e eececssecseaceseanneen 46
11'5 PREVSB- ® ® @ & & 9 & & 0 9 O S 9 " s e 0 ® © @& ¢ ® & & ® & P 2 B o 02 b s o 0 048
1706 RAISE ftternuiuienennroooensesoaacsseeasssassssannasanns ceeens 48
11.7 UNWIND—...QOD ® & & v & o » & & ® o 8 o ® & & © © % 9 O O & 5 0 O 0 O 8 N O SO S e * o ug
12 Stack Unwind Protocol...ceeeveeeeeeas c et e ceenes cecescsens ceeeoans .50
13 A PL/I Example.....‘....'.' ® & 9 5 & & 6 9 6 & 5 ¢ % P 2 O S B O " P S S O ° g 0 oo 51
T4 A Fortran Example. ... ieeeeeeeeeeeeeoecneonensancssocsnensss ceeesssb2

Page 2

\

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

1 Introduction to the Condition Mechanism

The notion of the "condition" comes from the corresponding concept in
the PL/I 1language. A condition is basically an unscheduled software
procedure call (or block activation) which 1is brought about by the
occurrence of some unusual event in a process. Examples of this are
hardware-defined faults (such as arithmetic exceptions), detection by a
subroutine of a hopeless error situation which cannnot be adequately
described to the subroutine's caller through available parameters, and
Quits from the user terminal (converted by Primos into a
hardware-defined fault).

Conditions are particularly useful in two basic circumstances: when
caused by an unpredictable hardware fault, and when the call-return
flow of control is not known by the routine detecting the unusual
happening.

The implementation of the condition mechanism described here is
intended to serve three purposes: to provide a consistent and useful
means for system software to handle error conditions and to manage a
reentrant/recursive command environmment; to provide user programs with
the capability to handle error conditions that heretofore forced a
return to command level; and to provide support for the condition
mechanism of ANSI PL/I. ‘

2 On-=Units '

An "on-unit" 1is a handler for a condition, and may either be a
prodecure (an "entry variable" in PL/I terminology), or a begin-block.
The latter result from execution of the PL/I <on statement>, while the
former result from explicit invocation of the system primitives mkonu$
and mkon$f. The only way to cause creation of an on-unit in a non-PL/I
program 1is to explicitly call the system primitives mkonu$ or mkon$f.
At various times, system software will create its own on-units for
system-defined conditions.

A procedure may also act to invalidate, or "revert", an on-unit it shad
previously created. In PL/I, this can be done by means of the <revert
statement>. The reversion of an on-unit can also be accomplished by
calling the system primitives rvonu$4 or rvon$f. ©Note that such a
reversion applies to the current activation only; the on-unit(s) for
the same condition created by activations earlier in the stack are not
affected.

Every on-unit is associated with a given activation, which is simply
the particular invocation of the procedure (or begin block) that
requested creation of the on-unit. Associated with every on-unit is
the name of the condition for which the on-unit is a handler. These
condition names are character strings of up to 32 characters, and may
represent system-defined conditions if the name is one of those

@m reserved for system use, or it may be a user-defined condition.

Page 3

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

The condition mechanism is activated whenever a condition 1is raised.
In PL/I terms, a condition is raised either explicitly as the result of
a <signal statement>, or implicitly as the result of some error having
been detected during regular computation. Note that in this context,
"error" is to be taken loosely: "end of file" is one such "error".

A condition may be raised by the execution of a PL/I <signal
statement>, or by an explicit call to the system primitives signl$ or
sgnl$f. In some cases, such as conversion of hardware faults to
conditions, this call is executed by system software and so is
invisible to the user: from the user's point of view, a hardware fault
is a condition signal.

3 Invocation of On-Units

When a condition is raised, the Condition Mechanism must first find an
on-unit for that condition. It does this by searching the stack
backward in time, starting from the activation belonging to the
prodecure that raised the condition. 1If an activation has an on-unit
for the specific condition name that was raised, that on-unit is
selected. If an activation does not have an on-unit for the specific
condition, but does have an on-unit for the special condition ANYS$,
that activation is said to have a default on-unit, and the ANY$ on-unit
is selected. Scanning is temporarily suspended at the first activation
containing a selectable on-unit, and that on-unit is invoked.

A selected on-unit is invoked according to the following specification:
del on_unit entry (ptr) variable;
call on unit (ptr_to cond frame);

That is, all on-units are passed a single argument which is a pointer
to the Standard Condition Frame Header that describes the condition
that was raised. Note that an on-unit operates as 1if it had been
invoked from the activation which created it, so that if the on-unit
procedure is internal to that activation, the normal PL/I scoping rules
for automatic storage (and all other storage classes) apply.

4 Possible Actions of an On-Unit

In the general case, an on-unit has several options as to what action
it can take. It may, of course, perform any desired
application-specific tasks, such as closing file wunits, deleting
temporary files, wupdating databases, doing consistency checks, and so
on in order to abort the computation that has been interrupted. In
many cases, however, it may be possible for the on-unit to repair the
cause of the condition (or even to determine that the condition can be
safely ignored), or to decide that the computation's normal flow can be
interrupted and the program reentered at some "known" point.

Page y

P

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

If permitted by the signaller of the condition, the on-unit may simply
return, in which case the computation will continue from the point of
the signal or hardware fault. If the signaller has forbidden such a
return, an attempt to do it will result in a signal of the condition
ILLEGAL ONUNIT RETURN$. There are information bits in the condition
frame header (see below) that inform the on-unit as to whether return
is permitted (this information is implicit in the name of most
system-defined conditions), and whether it will in general make sense
to return without having taken "corrective action".

An on-unit may perform a nonlocal goto to some previously defined
label, that will cause +the program to restart in some known state.
This action may always be taken, as the activation that caused the
condition to be raised will usually be aborted by the nonlocal goto,
and hence the issue of on-unit return does not arise.

An on-unit may also signal another (possibly the same, but beware of
infinite recursion) condition, and it may either permit or deny return
from that condition.

The on-unit may decide to get the process to command 1level, to allow
the wuser to take control. The system default on-unit is an example of
an on-unit that does exactly that. If the user enters the "start"
command, the new command level will return to the invoking on-unit.

Finally, the on-unit may decide that it has not been able to handle the
condition after all, or that it has only partially done so, and needs
help from an on-unit established by one of its dynamic ancestors. The
on-unit instructs the condition mechanism that it desires to "continue
to signal", and then simply returns. The condition mechanism will then
continue to scan up the stack for more on-units for the condition.

5 Using the Condition Mechanism from Fortran

Since Fortran is not a block-structured language, the use of on-units
(condition handlers) and of nonlocal goto's from Fortran is somewhat

restricted. In particular, there are no internal procedures or blocks
in Fortran, leaving external procedures (subroutines) as the only
possibilities for service as on-units. The fact +that a Fortran

statement label value does not contain an activation (stack) pointer
means that nonlocal goto's work in a way different from PL/I (see
below) .

To summarize the restrictions:

o Fortran on-units must be SUBROUTINEs, which may not, of course,
be internal to the subroutine or main program making the
on-unit.

o) Nonlocal goto's are defined in Prime Fortran to work only if

the target statement 1label belongs ¢to the caller of the
subroutine performing the nonlocal goto. That is, nonlocal

Page 5

&

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

goto's work only to the previous stack level.

5.1 Datatype Incompatibilities

The PL/I interfaces to the condition mechanism utilize the PL/I
datatype "character(¥) varying®". This datatype in not available in
Fortran (either 1966 or 1977 ANSI standard). The 1977 ANSI Fortran,
however, includes a datatype that 1is the equivalent of PL/I
"character(¥*) nonvarying".

For these reasons, a set of interfaces to the condition mechanism 1is
provided which wutilizes nonvarying character strings. The user is
cautioned that these interfaces will not be as efficient as those using
the varying character strings. It 1is possible to simulate varying
character strings in Fortran by using appropriate equivalences.

The Prime representation for a varying character string 1is equivalent
to an integer¥*2 array in which the first element contains the character
count, and the remaining elements contain the characters in packed
format. To illustrate:

PL/I:
del name char(5) varying static initial ('QUIT$');

Fortran:
INTEGER¥2 NAME(4)
DATA NAME /5, 'QUITS$'/

5.2 Interfaces for Nonlocal Goto's

A full-function nonlocal goto requires that the target 1label identify
both a statement and an activation (stack frame) of the program that
contains the statement. If such a nonlocal goto 1is required in a
Fortran program, the following interfaces can be used.

The procedure MKLB$F is called by a program to create a PL/I-compatible
label pointing to one of its statements. The activation pointer in the
label will identify the caller's activation.

The procedure PL1$NL will perform a nonlocal goto to a specified target
label. Labels produced by MKLB$F are acceptable to PL1$NL.

The calling sequences for these routines are described below.

Page 6

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

6 Default On-Units and Cleanup On-Units

The CLEANUP$ Condition

The special condition CLEANUP$ is used only during processing of a
nonlocal goto (or a crawlout from an inner ring). Any activation may
make an on-unit for the condition CLEANUP$, which will be invoked only
when that activation 1is about to be aborted by a crawlout or simple
nonlocal goto. -

The CLEANUP$ on-units of the activations on the stack are invoked in
reverse chronological order. Each CLEANUP$ on-unit is expected to
return unless it encounters a fatal error. No activation's stack frame
is removed from the stack until all activations have been cleaned wup
(i.e. all CLEANUP$ on-units have returned).

An on-unit for CLEANUP$ may perform any operation desired, but most
common will be such things as closing file units, freeing generations
of storage that have been allocated in static areas, and so on.

The Condition mechanism cannot guarantee that the CLEANUP$ on-unit in a
given activation will not be invoked more than once, but it can and
does guarantee that, once a CLEANUP$ on-unit has returned to the
Condition Mechanism and that activation has been marked "cleaned wup",
invocation of any of that activation's on-units (including CLEANUPS$),
as well as transfer of control into that activation by means of a
further nonlocal goto, are prevented.

The ANY$ Condition

An on-unit for the condition ANY$ is called a "default on-unit". A
procedure creates an on-unit for ANY$ in the normal manner (PL/I <on
statement>, or a call to mkonu$ or mkon$f), whenever it wishes to
intercept any condition that might be signalled during its activation.

When a given activation is reached during the stack scan associated
with the raising of a condition, it is first examined for an on-unit
for that specific condition. That on-unit is selected for invocation
if it exists. If the activation has no specific on-unit, but does have
an on-unit for ANY$, then the ANY$ on-unit is selected for invocation.
The Standard Condition Frame Header passed to the ANY$ on-unit
describes the original condition because of which the on-unit is being
invoked.

Hence, a procedure's default (ANY$) on-unit 1is invoked only if the
procedure has no specific on-unit for the given condition.

User programs should not include an ANY$ on-unit unless truly
necessary. A user ANY$ on-unit should not attempt to handle most
system conditions, but rather should "pass them on" by simply
returning. The continue switch (efh.cflags.continue sw) 1is set
automatically whenever an ANY$ on-unit 1is invoked. Any user ANY$
on-unit that fails to return with the continue switch still set, may

Page T

¢

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

cause IMPROPER OPERATION of user or Prime software at some future
release of the system.

7 System Primitive Interfaces to the Condition Mechanism

The following section documents new dynamically-linked calls that have

been made available so that V-mode programs may use the Condition
Mechanism. Note that it is not possible for R-mode programs to use any

of these interfaces.

Page 8

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

fm ---------- Signal Specific Condition = eccceceameaaa
1

---------- System Primitive 03-09-79 —c—emecaea-
Name: signl$
Purpose:

The primitive signl$ is called in order to raise a specific condition
in the ring of the caller. The stack is scanned backwards in order to
find an on-unit for this condition, or a default (ANY$) on-unit. The
first such on-unit found is invoked according to the specification
given in PE-T-468, "Invocation of On-Units". The on-unit has the
option of signalling another <condition; of calling the primitive
cnsig$ to request that the stack scan for on-units continue and then
returning; of performing a nonlocal goto; and it may have the option
of simply returning, in which case the processing of the condition is
considered complete and signl$ returns to its caller.

If signl$ is called from a procedure executing in an inner ring (a ring
less than 3), and no on-unit or default on-unit is found in that inner
ring, an event known as a crawlout occurs. See "PE-T-468, The Crawlout
Mechanism" for further details.

Usage:

dcl signl$ entry (char(¥*) var, ptr, fixed bin, ptr, fixed bin,
bit(16) aligned);-

call signl$ (condition name, ms_ptr, ms_len, info_ptr,

info_len, action);

condition name .
is the name of the condition to be signalled. (Input)

ms ptr
- is a pointer to an sfh, ffh or c¢fh structure defining the
machine state at the time the event occurred which makes
necessary this call to signl$. If ms _ptr is null, signl$ will
use a pointer to the c¢fh produced by the call to signl$.
(Input)
ms len
- is the length in words of the structure pointed to by ms_ptr.
If ms ptr is null, the value of ms_len 1is not examined.
(Input)
info_ptr

is a pointer to an arbitrary structure containing auxiliary
information about the condition. The format of this structure
need be known only to those procedures that will raise or
handle this condition. If no auxiliary information is

Page 9

-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

available, info_ptr should be null. (Input)

info_len
is the length of the structure pointed to by info ptr, in
words. If info ptr is null, the value of info len is not
examined. (Input) -

action
has the following internal structure:

decl 1 action,

return_ok bit(1) unal,
inaction ok bit(1) unal,
crawlout bit(1) unal,
specifier bit(1) unal,
mbz bit(12) unal;

PN

Action.return ok should be '1'b if the on-unit is to be allowed
to return. Action.inaction_ok, if '1'b, informs a potential
on-unit that it may return without taking any corrective action
and still expect "defined" results. (Return ok must be '1'b if
inaction ok is '1'b). Action.crawlout is '1'b if this call to
signl$ is the result of a crawlout. This bit should never be
set by a user program in a call to signl$, but signl$ has no
way to enforce this restriction. Action.specifier is '1'b to
signal a PLIO condition. The first member of the info
structure mnmust be the appropriate specifier . pointer.
Action.mbz must be '0'b. (Input) '

User programs shoud never attempt to signal a PLIO condition (that is,
action.specifier should never be '1'b).

The blocks of storage identified by (ms ptr, ms_len) and (info_ ptr,
info_len) will be copied onto the outer ring stack if a crawlout
occurs. In general, however, a PLIO condition should not be signalled
in an inner ring, as the file control block may be inaccessible to the
outer ring(s).

Page 10

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

em'r --------- Make an On-Unit = ecceccecao--
---------- System Primitive 03-09-79 ===m—cec—eee--
Name: mkonu$

Purpose:

The primitive mkonu$ is called by a procedure or begin block when it
wishes to create an on-unit for a specific condition, or a default
on-unit (an on-unit for the condition ANY$).

Usage:

dcl mkonu$ entry (char(¥) var, entry)
options (shortecall (18));

call mkonu$ (condition name, on_unit_entry);

condition name
is the name of the condition for which the activation desires
to create an on-unit. If the activation already has an on-unit
for this condition, the previous on-unit is overwritten by this
new one. (Input)

on unit entry
~ 7 Tis an entry value representing the on-unit procedure to Dbe
invoked when condition name 1is raised and this activation is
reached in the stack scan. Because mkonu$ does not save the
display pointer associated with on unit_entry, the entry value
must be external or internal to the block calling mkonu$. Note
that an entry constant that is declared in the block containing
%he ca%l to mkonu$ must necessarily satisfy these restictions.
Input

Notes:

The stack frame of the caller 1is grown, if necessary, to add the
descriptor block for the new on-unit.

The value of <condition name> must not contain trailing blanks.

The caller must guarantee that the generation of storage occupied by
condition name will not be freed until after the caller returns or its
activation is aborted by a nonlocal goto. For PL/I callers, this
implies that condition _name may not be a constant.

Page 11

-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

---------- Revert an On-Unit ——————————
---------- System Primitive 09-26-78 ===c-e----
Name: rvonu$

Purpose:

This primitive is called by an activation whenever it wishes to revert
an on-unit it had previously created. A reverted on-unit is ignored

when scanning the stack for an on-unit for a condition that has been
raised. The only way to re-instate a reverted on-unit is to issue

another call to mkonu$.
Usage:
del rvonu$ entry (char(¥*) var);
call rvonu$ (condition name);
condition_ name
is the name of the condition whose on-unit in this activation

(if any) is to be reverted. (Input)

Notes:

There is no effect if an activation attempts to revert an on-unit for a
condition when that activation has no on-unit for the condition, or if
that activation had already reverted its on-unit for the condition. 1In
no case will a call to rvonu$ affect on-units in any other activation.

Page 12

-

-

-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

---------- Set Continue-To-Signal Switch ——————————
---------- System Primitive 09-26-78 —--eccmce--
Name: cnsig$
Purpose:
The primitive cnsig$ is called by an on-unit when that on-unit has not
been able to completely handle the condition because of which it was
invoked. After calling cnsig$, the on-unit should return, at which
point the Condition Mechanism will resume scanning the stack for more
on-units for the condition that was raised.
Usage:
del cnsig$ entry (fixed bin);
call cnsig$ (status);
status
is a standard system error code, and will be nonzero only if
there was no condition frame found in the stack in which to set

the continue_sw.

Notes:

Multiple calls to cnsig$ by the same on-unit prior to returning to the
Condition Mechanism will have the same effect as a single call.

The continue switch is automatically set whenever an ANY$ on-unit is

invoked. Such an on-unit, therefore, need not call cnsig$ in order to
continue to signal.

Page 13

&

¥
1

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

---------- Make an On-Unit (Fortran) —————————-
---------- System Primitive 03-09-79 —-ccecmeeeea
Name: mkon$f

Purpose:

The primitive mkon$f performs the same function as mkonu$; that is, an
on-unit for a specified condition name 1is created for +the calling
procedure or Dblock. This interface, however, avoids use of varying
character strings and so may be more convenient for Fortran and other
languages. WARNING: this interface is substantially less efficient
than mkonu$, both in terms of stack space and execution time.
Applications where these are important should use mkoun$.

Usage:

CALL MKON$F (CNAME, CNAMEL, UNIT)
EXTERNAL UNIT
INTEGER¥2 CNAME (--), CNAMEL

CNAME
is an array containing the name of the condition for which an

on-unit is desired. (Input)

CNAMEL -
is the length in characters of CNAME. (Input)

UNIT
is an external subroutine (or procedure) which is to become the
on-unit handler for this condition. This subroutine will be
invoked with one argument as follows:

CALL UNIT (CP)
INTEGER*4 CP

where CP is a pointer to the condition frame header (cfh) that
describes the condition. '

Notes:

IMPORTANT: any program compiled by the FTN compiler that makes a call
to mkon$f, must include the specification statement "STACK HEADER 34",
and be compiled with the -SPO option. This reserves the stack space
necessary for on-unit data. If mkonu$ 1is wused, 1its SHORTCALL
specification will reserve the needed space.

The comments in the writeup on mkonu$ apply to mkon$f as well, with the
exception that CNAME and CNAMEL may be overwritten by the caller once
mkon$f has returned, because they are copied 1into a stack frame
extension by mkon$f.

Page 14

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

@hNote that every call to mkon$f allocates additional stack space to hold
a copy of CNAME, even if the caller had previously called mkon$f with
the same values of CNAME and CNAMEL.

Page 15

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

---------- Revert On-Unit (Fortran) —————————-

| rvon$f | i rvon$f |
@h ---------- System Primitive 03-09-79 ~—ce—ceceeaa

Name: rvon$f

Purpose:

The primitive rvon$f reverts an on-unit for a specific condition in the
caller's activation. It 1is identical in effect to rvonu$. WARNING:
this interface is less efficient in execution time (and temporary stack
space used) than is rvonu$; time- or space-critical applications may
wish to use rvonu$ instead.

Usage:
CALL RVON$F (CNAME, CNAMEL)
INTEGER¥2 CNAME(--), CNAMEL
(™ CNAME .
is the name of the condition whose on-unit in the caller's
activation is to be reverted. (Input)
CNAMEL
is the length in characters of CNAME. (Input)
Notes:

6% All comments that apply to rvonu$ also apply to rvon$f.

Page 16

-

&

N
-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

---------- Signal Specific Condition (Fortran) ——————————
---------- System Primitive 03-09-79 ==-——cee---
Name: sgnlsf

Purpose:

The primitive sgnl$f is used to signal a specific condition, supplying
optional auxiliary information with the signal. A call to sgnl$f is
equivalent in effect to a call to signl$. WARNING: this interface 1is
less efficient in execution time (and temporary stack space used) than
signl$; time- or space-critical applications may wish to use signl$.

Usage:

CALL SGNL$F (CNAME, CNAMEL, MSPTR, MSLEN, INFOPT,
INFOLN, FLAGS)

INTEGER*2 CNAME(--), CNAMEL, MSLEN, INFOLN, FLAGS

INTEGER *4 MSPTR, INFOPT

CNAME
is the name of the condition to be signalled. CNAME is an
integer array containing the character string. (Input)

CNAMEL
is the length of CNAME in characters. (Input)

MSPTR
is an integer¥*4 datum containing a hardware Indirect Pointer to

a stack frame describing the machine state at the time the
condition was detected. User callers will not usually know
this value, and if not should pass the null pointer value
7777/0, which as an octal constant is :1777600000. (Input)

MSLEN
is the length in words of the machine state stack frame header.

(Input)

INFOPT
is a pointer (same format as MSPTR) to a user-supplied
information array. This array can be in any format. If the
array is contained in the variable X, a pointer to it is passed
by the nonstandard expression LOC(X). Callers should pass the
null pointer (see above) if no information array is being
supplied. (Input)

INFOLN
is the length in words of the information array pointed ¢to by
INFOPT. (Input)

FLAGS .
is an integer datum specifying certain control actions ¢to

Page 17

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

SGNL$F. If bit 1 (:100000) is set, the on-unit may return. If
bit 2 (:040000) is set, the on-unit need not take any
corrective action before returning. All other bits will
usually be O (but see the writeup on signl$ for a full
description). (Input)

Page 18

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

—————————— Make Label Value (Fortran) ——————————
@“I mklb$f | ! mklb$f |

---------- System Primitive 03-09-79 comeceeceaa--

Name: mklb$f

Purpose:

The primitive mklb$f is called to convert a Fortran statement label or
integer variable that has been assigned a statement label value, into a
PL/I-compatible 1label value. This value can then be used to cause a
full-function nonlocal goto in a Fortran program.

Usage:

CALL MKLB$F (STMT, LABEL)
INTEGER *¥2 STMT
o REAL*8 LABEL

STMT

LABEL

is either a variable to which a statement number has been
assigned by an ASSIGN statement, or else is a statement number
constant of the form $xxxxx. (Input)

will be set to a PL/I-compatible label value identifying the
statement STMT in the activation of the caller of MKLB$F.
(Output)

Page 19

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

---------- Generate Nonlocal Goto ——————————

Name: pli$nl
Purpose:
This primitive performs a full-function nonlocal goto to the activation

and statement identified by a supplied 1label value. Label values
created by calls to mklb$f are suitable arguments to pli1$nl.

Usage:

CALL PL1$NL (LABEL)
REAL*8 LABEL

. LABEL
@h is a PL/I-compatible 1label value (such as is produced by
mklb$f). P11$nl will cause a nonlocal goto to the statement
and activation identified by LABEL. (Input)

Page 20

~

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

8 Data Structure Formats

The sections below describe the data structures associated with the

Condition Mechanism. Any wuser program that wuses these structures
should examine the version number in the structure (if one is
provided); if the format of a structure changes, the version number

will be incremented. The user program can then take appropriate action
if it is presented with structures of different formats.

8.1 The Condition Frame Header (CFH)

The following declaration shows the format of the Standard Condition
Frame Header:

del 1 c¢fh based, /¥* standard condition frame header ¥/
2 flags,

backup_inh bit(1),

cond_fr bit(1),

cleanup done bit(1),

efh present bit(1),

user_proc bit(1),

mbz bit(9),

fault_fr bit(2),

2 root,

3 mbz bit(4),

3 seg no bit(12),

ret_pb ptr,

ret_sb ptr,

ret_1lb ptr,

ret keys bit(16) aligned,

after_pecl fixed bin,

hdr_reserved(8) fixed bin,

owner_ptr ptr,

cflags,

crawlout bit(1),

continue_sw bit(1),

return_ok bit(1),

inaction_ok bit(1),

specifier bit(1),

mbz bit(11),

version fixed bin,

cond_name_ptr ptr,

ms ptr ptr,

info ptr ptr,

ms_len fixed bin,

info_len fixed bin,

saved_cleanup_pb ptr;

wWWWLwwwww

PPN

wWwwwww

VIS IAVE \VH S AV V)

(™ flags.backup inh

will always be '0'b in a condition frame. It is wused in

Page 21

P

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

regular call frames to control program counter backup on
crawlout from an inner ring.

flags.cond fr
identifies this frame as a condition frame, and will thus be
'1'b.

flags.cleanup done
is '"1"b when this activation has been "cleaned wup" by the
procedure unwind , which helps to effect nonlocal goto's. When
this flag 1is set, the value of cfh.ret_pb no longer describes
the return point of the activation; that information 1is

available in cfh.saved_cleanup pb.

flags.efh present
will always be '0O'b in a condition frame. It is wused in a
regular call frame to indicate that an extended stack frame
header containing on-unit data is present.

flags.user_ proc :
identifies stack frames belonging to "non-support"™ procedures,

and hence will be '0'b in a condition frame.

flags .mbz
is reserved and will be '0'b.

flags.fault fr
will always be '00'b in a condition frame.

root .mbz
is reserved and must be '0'b.

root.seg _no
is the hardware-defined stack root segment number, and
indicates which segment contains the-stack root for the stack
containing this fault frame.

ret pb
- points to the next instruction to be executed following the
call to signl$ that caused this condition to be raised, unless
flags.cleanup_done is '1'b, in which case cfh.ret_pb will point
to a special code sequence used during stack unwinds, and
cfh.saved cleanup pb will contain the former value of
cfh.ret pb. -

ret sb
- is the hardware-defined stack base of the caller of signl$.
Thus, this value also points to the previous stack frame on the
stack.

ret 1b .
- is the hardware-defined linkage base of the caller of signl$.

Page 22

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

ret_keys
is the hardware-defined keys register of the caller of signl$.

after_pecl
is the hardware-~defined offset of the first argument pointer
following the call to signl$ that raised this condition.

hdr reserved
- is reserved for future expansion of the hardware-defined
PCL/CALF stack frame header, of which the totality of c¢fh is a
further extension.

owner_ptr
is reserved to point to the ECB of the procedure that owns this
stack frame (usually signl$).

cflags.crawlout
is "1'b if this condition occurred in an inner ring (a ring
number lower than the ring in which the on-unit is executing),
but could not be adequately handled there; else it is '0'b.

cflags.continue sw

is used to indicate to the Condition Mechanism whether the
on-unit that was just invoked (or any of its dynamic
descendants) wishes the backward scan of the stack for on-units
for this condition to continue upon the on-unit's return. The
system primitive cnsig$ 1is used to request that
cflags.continue sw be turned on; user programs should NOT
attempt to set it directly. This switch is cleared before each
on-unit is invoked (except ANY$ on-units).

cflags.return ok

is '"1"b if the procedure that raised the condition is willing
for control to be returned to it by means of the on-unit simply
returning. If '0'b, an attempt by an on-unit for this
condition to return will cause the special condition
ILLEGAL ONUNIT_RETURN$ to be signalled. Note, however, that
the on-unit may return regardless of the state of
cfh.cflags.return ok if cfh.cflags.continue_sw has previously
been set by a call to cnsig$. This is because, in this case,
the on-unit return does not cause a return to the procedure
that raised the condition, but instead causes a resumption of
the stack scan.

cflags.inaction ok

is '"1'b if the procedure that raised the condition has
determined that it makes sense for an on-unit for this
condition to return without taking any corrective action. If
'0'b, the on-unit must take some corrective action before
returning, or else continued computation may be undefined.
Cflags.inaction ok will never be '1'b unless cflags.return_ok
is '1'b as well. No user program should change the state of
this or any other member of c¢fh.cflags.

-

-

@“

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

cflags.specifier
if '1'b, indicates that this condition is a PL/I I/0 condition
(PLIO condition) that requires a specifier pointer as well as a
condition name to completely identify it. This specifier is
usually a pointer to a PLIO file control block. The specifier
must be the first member of the info structure.

cflags .mbz
is reserved for future expansion and must be '0'b.

version)
identifies the version number (and hence the format) of this

structure, and will currently always be 1.

cond name_ ptr
is a pointer to the name (char(32) varying) of the condition
because of which the on-unit is being invoked.

ms ptr

- is a pointer to a structure which defines the state of the CPU
at the time the condition occurred. 1In the case of hardware
faults, ms_ptr will point to a Standard Fault Frame Header
(ffh). In the case of software-initiated conditions, ms _ptr
will point to a cfh. The two cases can be distinguished by the
value of ms_ptr -> cfh.flags.fault fr: if '00'b, the software
case obtains; otherwise, the hardware case obtalns.

info ptr .
is a pointer to an arbitrary structure containing auxiliary
information about the condition. If null, no information is
available. This pointer is copied directly from the
corresponding argument to signl$. If cflags.specifier is '1'b,
the format of this structure 1is partially constrained as
described above.

ms len
- is the length in words of the structure pointed to by ms ptr.

info_len
is the length in words of the structure pointed to by info_ptr.

saved_cleanup pb
is valid only if flags.cleanup_done is '1'b, and if wvalid is
the former value of cfh.ret pb (which has been overwritten by
the nonlocal goto processor).

Notes

Any procedure attempting to interpret the data contained in a ec¢fh
structure should be aware that, in the case of a crawlout, cfh.ms_ptr
describes the machine state at the time the condition was generated.
The stack history pertaining to that machine state has been lost as a
result of the crawlout.

Page 24

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

The machine state extant at the time the inner ring was entered is
available, and is pointed to by c¢fh.ret _sb. This machine state will be
a cfh or an ffh according to whether the inner ring was entered via a
procedure call (ecfh) or a fault (ffh). The value of cfh.ret _sb ->
cfh.flags.fault fr can be used to distinguish these cases.

In the case where a crawlout has not occurred, c¢fh.ms ptr points to the
proper machine state, and no assumptions can be made concerning
cfh.ret_sb.

8.2 The Extended Stack Frame Header

Any procedure (or begin block) that desires to make one or more
on-units must reserve space in its stack frame header for an extension
that contains descriptive information about those on-units. This space
is allocated simply by including in such procedure the proper
declaration for the system primitive mkonu$.

The format of the stack frame header (with extension) 1is as shown
below.

del 1 sfh based, /¥ stack frame header ¥/
2 flags,

backup_inh bit(1),

cond fr bit(1),

cléanup_done bit(1),

efh present bit(1),

user_proc bit(1),

mbz bit(9),

fault_fr bit(2),

2 root,

3 mbz bit(4),

.3 seg_no bit(12),

ret _pb ptr,

ret sb ptr,

ret 1lb ptr,

ret’' keys bit(16) aligned,

after pcl fixed bin,

.hdr_reserved(8) fixed bin,

owner ptr ptr,

tempsc(8) fixed bin,

onunit ptr ptr,

cleanup_onunit_ptr ptr,

next_efh ptr;

WWwwwuwww

ODVINCINVELSEVINVINS RV VRV

flags .backup_inh
is examined only if this stack frame is the "crawlout frame" on
an inner ring stack, and a crawlout is taking place. If '1'b,
it indicates that sfh.ret pb is to be copied to the outer ring
as-is, so that the operation being aborted by the crawlout will
not be retried. If '0'b, sfh.ret_pb will be set to baserel

Page 25

o~

Specif

flags.

flags.

flags.

flags.

flags.

flags.

root .m

root.s

ret pb

ret_sb

ications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

(sfh.ret_pb, sfh.after pcl - 2), so that the inner ring call
may be retried.

cond fr
will be 'O'b unless the frame is a condition frame (and 1is
hence described by the structure "ecfh").

cleanup done
is '17b if the nonlocal goto processor has "cleaned up" this
frame by invoking its CLEANUP$ on-unit if any, and resetting
its sfh.ret_pb to point to a special code sequence to
accomplish the unwinding of this stack frame. When '1'b, the
former value of sfh.ret pb may be found in sfh.tempsec(7:8)
provided sfh.flags.efh present is set.

efh present
is '"1'b if the extension portion of this frame header has been
validly initialized. In the present implementation, this
implies that at least one call to mkonu$ has been made, since
mkonu$ is responsible for performing the initialization. If
'0'b, members of this structure below marked (EFH) are not
valid and may be used by the procedure for automatic storage.

user proc
is '1'b if this stack frame belongs to a "non-support"”
procedure; else 1is '0'b. If flags.user_proc 1is '1'b,
sfh.owner ptr is guaranteed to be valid, and to point to an ecb
which is followed by the name of the entrypoint.

mbz
is reserved and will be '0'b.

fault fr
is '00'b if this frame was created by a regular procedure call;
or '10'" if this frame is a fault frame (ffh) with valid saved
registers; or '01'pb if this frame is a fault frame (ffh) in
which the registers have not yet been saved.

bz
is reserved and must be '0'b.

eg_no
is the hardware-defined segment number of the stack root of the
stack of which this frame is a member.
points to the next instruction to be executed upon return from
this procedure.

contains the stack base belonging to the caller of this
procedure, and hence also points to the immediate predecessor
of this stack frame.

Page 26

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

ret_1b

contains the linkage base belonging to the «caller of this
procedure.

ret keys
contains the hardware-defined keys register belonging to the
caller of this procedure.

after_pecl
is a value such that baserel (sfh.ret pb, sfh.after_pcl) points
to two words beyond the procedure call (PCL) instruection that
invoked this procedure.

hdr_reserved (EFH)
is reserved for future expansion of the hardware-defined PCL
stack frame header.

owner_ptr (EFH)
points to the Entry Control Block (ECB) of the procedure that
owns this stack frame. This member must be initialized by the
called procedure itself, as the PCL instruction does not do it.

tempsec (EFH)
is a fixed-position block of eight words to be wused as
temporary storage by procedures called by this procedure that
have a "shortcall" invocation sequerice and hence have no stack
frame of their own.

onunit_ptr (EFH)
points to the start of a chain of on-unit descriptor blocks for
this activation. If onunit ptr is null, this activation has no
onunit blocks, except possibly for the condition CLEANUP$ as
described below.

cleanup_onunit_ptr (EFH) '
If nonnull, this activation has an on-unit for the special
condition CLEANUP$, and cleanup onunit_ptr points to the ECB
for that on-unit procedure (it does not point to an on-unit
descriptor block).

next_efh (EFH)
points to the first on a chain of additional stack frame
"header"™ blocks, so that these do not have to be allocated at
the beginning of the stack frame. Presently, next efh will
always be null.

8.3 The Standard Fault Frame Header

Whenever a hardware fault occurs, the so-called Fault Interceptor
Module (FIM) is expected to push a stack frame with the standard format
shown below. 1In addition, a register-save protocol must be followed by
all but ring three fault interceptors. The only inner ring FIM which

Page 27

Speci

fications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

is permitted to violate these rules is the FIM for the Unimplemented

@m Instr

The s

(™ flags

flags

flags

flags

flags

uction fault.
tandard fault frame header structure is as follows:

del 1 ffh based, /* standard fault frame header ¥/
2 flags,

backup inh bit(1),

cond fr bit(1),

cleanup done bit(1),

efh present bit(1),

user_proc bit(1),

mbz bit(9),

fault fr bit(2),

root,

3 mbz bit(4),

3 seg no bit(12),

ret_pb ptr,

ret sb ptr,

ret 1b ptr,

ret keys bit(16) aligned,

fault_type fixed bin,

fault_code fixed bin,

fault_addr ptr,

hdr reserved(7) fixed bin,

regs,

3 save_mask bit(16) aligned,

3 fac_T1(2) fixed bin(31),

3 fac_0(2) fixed bin(31),

3 genr(0:7) fixed bin(31),

3 xb_reg ptr,

2 saved cleanup pb ptr,

2 pad fixed binj;

wWwwwwuwww

N

PP PPN D

.backup_inh

will be ignored by the Condition Mechanism for fault frames.
.cond fr

will be '0'b in a fault frame.
.cleanup done

is set to '1'b by the stack unwinder when it has "cleaned up"
this fault frame. The old value of ffh.ret pb has been placed
in ffh.saved cleanup_pb, provided flags.fault fr is '10'b.

.efh present
will be '0'b in a fault frame, implying that FIM's may not make
on-units.

.user proc
will always be '0'b in a fault frame.

Page 28

-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

flags.mbz
is reserved and will be '0'b.

flags.fault fr
will be '10'b if this frame is indeed a standard format ffh and

the registers have been validly saved in ffh.regs; else will
be '01'b.

root.seg_no
is the hardwqre—define stack root segment number.

ret_pb

points to the next instruction to be executed following a
return from the fault. This will frequently also be the
instruction that caused the fault (the case for those faults
defined by the CPU reference manual as "backing up" the program
counter). If flags.cleanup done is '1'b, ret pb will point to
a special "unwind" code sequence, and its former value will
have been saved if possible in ffh.saved_cleanup_pb.

ret sb
- contains the value of the SB register at the time of the fault,

and hence will usually point to the predecessor of this stack
frame.

ret 1b .
contains the value of the LB register at the time of the fault.

ret_keys)
contains the value of the KEYS register at the time of the
fault. This can be used to determine in what addressing mode
the fault was taken.

fault_type
is set by each FIM to the offset in the fault table
corresponding to the fault that occurred (e.g. a Process Fault
results in a fault_type of '04'b3). This datum cannot be
guaranteed valid, as it 1is not set indivisibly with the
hardware-defined header information. Since FIM's wusually set
fault_type just after saving the registers, it is very unlikely
for fault_type to be invalid.

fault_code
is the hardware-defined fault code produced by the fault that
was taken. .

fault_addr

is the hardware-defined fault address produced by the fault
that was taken.

hdr_reserved
is reserved for future expansion of the PCL/CALF header.

Page 29

-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

regs
is valid if flags.fault fr is '10'b, and if valid contains the
saved machine registers at the time of the fault, in the format
produced by the RSAV instruction.

saved_cleanup_ pb
is valid only if flags.fault fr is '10'b and flags.cleanup done
is "1'b, and if valid contains the value that was in ret_pb
before the latter was overwritten by the stack unwinder.

pad

exists only to make the size of this structure an even number
of words.

8.4 The On-Unit Descriptor Block

Each on-unit created by an activation is described to the Condition
Mechanism by a descriptor block (except for the special condition
CLEANUP$, which has no descriptor). These descriptor blocks are
threaded together in a simple linked list, the head of which is pointed
to by sfh.onunit ptr. The format of an on-unit descriptor 1is as
follows. -

del 1 onub based, /* standard onunit block ¥/
2 ecb ptr ptr,
2 next_ ptr ptr,
2 flags,
3 not_reverted bit(1),
3 is_proec bit(1),
3 specify bit(1),
3 snap bit(1),
3 mbz bit(12),
pad fixed bin,
cond_name_ptr ptr,
specifier ptr;

NN

ech ptr
- points to the Entry Control Block (ECB) which represents the
procedure or begin block to be invoked when this on-unit is
selected for invocation.

next ptr
points to the next on-unit descriptor on the chain for this
activation, or else is null if at the end of the list.

flags.not_reverted
is '"1'b if this on-unit is still wvalid and has not been
reverted, and 1is '0O'b if the on-unit has been reverted and is
to be ignored by the condition raising mechanism.

. Page 30

-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

flags.is_proc
is "1'b if this on-unit was made via a call to the primitive
mkonu$, and '0'b if it was made via the PL/I <on statement>.

flags.specify
is '1'b if the condition name does not fully identify which
condition this on-unit block is to handle: onub.specifier is a
further qualifier in this case.

flags.snap
is '1'b if the <snap option> was specified in +the PL/I <on
statement> that created this on-unit; else it is '0'b.

flags.mbz
is reserved and must be '0'b.

pad
is reserved and must be 0.

cond_name_ptr
is a pointer to a varying character string containing the
condition name for which this on-unit is a handler. This name
may be an incomplete specification if onub.flags.specify is

'1'b.

specifier .
is valid only if onub.flags.specify is '1'b, and if wvalid
qualifies the condition name that 1is pointed to by

onub.cond name_ptr. The primary use of onub.specifier 1is for
PL/I I1/0 conditions, in which the specification of the
condition requires both a name and a file descriptor pointer.

9 System-Defined Conditions

The following table lists all current standard system-defined condition
names, lists the meaning of each, and describes what information is
available from the cfh structure produced by each condition.

In the descriptions below, "software™ means that the machine state
frame pointed to by cfh.ms ptr is a c¢fh frame; "hardware" means that
this frame is an ffh frame. The notation "ffh." and Yefh.," below
refers to the ffh or cfh that is pointed to by cfh.ms_ptr. The "info
structure"s referred to below are pointed to by cfh.info_ptr.

Unless otherwise noted below, the system default on-unit for each
condition prints an appropriate diagnostic message on the user's
terminal, and calls a new command level.

-

-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

ERRRTN$

software not returnable

A non-ring-0 call to the ring 0 entry ERRRTN was made, as the
result of an ERRRTN SVC or a call to ERRPR$ with certain values of
the key.

No info structure is available.
The default on-unit for this condition simulates a call to EXIT;

hence, this condition should be signalled only while executing in a
Static Mode program.

ACCESS_VIOLATIONS$

hardware returnable

The process has attempted to perform a CPU instruction which has
violated the access control rules of the processor. No information
is readily available to differentiate between Write Violation, Read
Violation, Execute Vioaltion and Gate Violation.

ffh.fault type has the value '44'bh3,

ffh.fault_addr contains the virtual address the access to which is
improper.

ffh.ret_pb points to the instruction causing the violation.

No info structure is available.

POINTER FAULT$

hardware returnable

The process has referenced through an indirect pointer (IP) whose
fault bit is on, but that pointer did not appear to be a valid
unsnapped dynamic link.

ffh.fault type has the value '64'b3.
ffh.fault addr points to the faulting IP.
ffh.ret_pb points to the faulting instruction.

No info structure is available.

LINKAGE_FAULTS$

hardware returnable

The process has referenced through an indirect pointer (IP) which
is a wvalid wunsnapped dynamic 1link, but the desired entry point
could not be found in any of the dynamic link tables.

ffh.fault type has the value '64'b3.

Page 32

-

-

-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

ffh.fault_addr points to the faulting IP.
ffh.ret_pb points to the faulting instruction.

Info structure:
del 1 info based,
2 entry name char(32) var;

%nfoéentry_name is the name of the entry point that could not be
ound.

RO_ERR$

software returnable
A ring-0 call to ERRPR$ or ERRRTN has been made, as the result of
some fatal error condition having been detected.
No info structure is available.

The default on-unit for this condition prints no diagnostic, but
calls a new command level.

ARITH$

hardware returnable

The process has encountered an Arithmetic Exception Fault.

ffh.fault_type has the value '50'Db3.

ffh.fault_code is the hardware-defined Exception Code, and
partially identifies the cause of the fault.

ffh.ret pb points to the next instruction to be executed upon
return.” There is no way in general to obtain a pointer to the
faulting instruction.

No info structure is available.

The Static Mode default on-unit for this condition will simulate
Prime 300 fault handling for Arithmetic Exception if the
appropriate word of segment '4000 1is non-zero (see the System
Architecture Guide for the exact 1location). If a Static Mode
program is not in execution when the fault occurs, or if the Prime
300 vector word is zero, the standard default handler for this
condition will resignal the ERROR condition with the appropriate
info structure.

SVC_INST$

hardware returnable

The process has executed an SVC instruction, but the system has not
been able to perform the operation. If the wuser 1is in "SVC
virtual" mode, all SVC instructions result in this condition being

Page 33

-

-

-

-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

raised.

ffh.fault type has the value '14'b3.
ffh.ret _pb points to the location following the SVC instruction.

Info structure:
del 1 info based,
2 reason fixed bin;

info.reason has one of the following values: 1 (bad SVC operation
code or bad argument(s)); 2 (alternate return needed but was
zero); or 3 (virtual SVC handling is in effect in this process).

For the case of virtual SVC's only (info.reason code of 3), the
Static Mode default on-unit will simulate the Prime 300 fault
handling for the SVC fault if the appropriate word of segment '4000
is non-zero; if this word (see the System Architecture Guide for
the exact location) is zero or if there is no Static Mode program
in execution, the standard default handler prints a diagnostic and
calls a new command level.

ILLEGAL ONUNIT_RETURNS

software not returnable
An on-unit for some condition has attempted to return, when that
has been disallowed by the procedure that raised the condition.

Info structure: the standard—fo?mat cfh that describes the
condition whose on-unit has illegally attempted to return.

STACK OVF$

hardware ’ returnable

The process has overflowed one of its stack segments, but the
Condition Mechanism was able to locate a stack on which to raise
this condition.

ffh.fault type has the value '54'b3.

segno (ffh.fault addr) is the last stack segment in the chain of
stack segments of the stack that overflowed. It is this segment
that contains the zero extension pointer that caused the stack
overflow fault.

ffh.ret pb points to the faulting instruction.

No info structure is available.

The Static Mode default on-unit will attempt to simulate the Prime
300 fault handling for Stack Overflow fault if the appropriate word
(see the System Architecture Guide) of segment '4000 is nonzero.
If this word is zero or if no Static Mode program is in execution,
the standard default handling occurs.

Page 34

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

" qQuiTs

-

hardware|software returnable

The user has actuated the quit button (Break Key or Control-P) on
his terminal.)

Igu ggis is a hardware signal, then ffh.fault type has the value
t ' -

cfh.ret_pb or ffh.ret pb points to the next instruction to be
executed in the faulting procedure.

No info structure is available.

The default on-unit flushes the input and output buffers of the
user's terminal, prints the message "QUIT." on the terminal, and
calls a new command level.

hardware returnable

The process has executed an unrecognized instruction that
nevertheless caused an Unimplemented Instruction Fault, or else the
system UII handler detected an error in processing the valid UII.

The ffh that accompanies this condition is nonstandard in that
ffh.regs is not valid.)

ffh.ret_pb points to the next instruction to be executed in the
faulting procedure.

CLEANUPS$

software returnable

The nonlocal goto processor (unwind) is in the process of invoking
on-units for the condition CLEANUP$ in each activation on the
stack, prior to actually unwinding the stack. The on-unit for this
condition should return, unless it encounters a fatal error. Calls
to cnsig$ from a CLEANUP$ on-unit have no effect.

No info structure is available.

LISTENER_ORDER$

software (varies)

This condition is used internally by the command loop to manage its
recursion. Users should NEVER make on-units for this condition,
and user default on-units (ANY$) should always pass this condition
on by returning.

Page 35

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

The format of the info structure that accompanies this condition is
described in the writeup on the Primos Command Environment.

€ Bap_NoNLOCAL_GOTOS$

-

§)

software not returnable

The nonlocal goto processor has been asked to transfer control to a
label whose display (stack) pointer is 1invalid, or whose target
activation has already been cleaned up. There 1is also a
possibility that the user's stack may have been overwritten.

Info structure:

del 1 info based,
2 target_label label,
2 ptr_to_nlg call ptr,
2 caller_sb ptr;

info.target label is the label to which the nonlocal goto was
attempted. _info.ptr_to nlg call is a pointer to the call to pli$nl
that requested this nonlocal goto. info.caller_sb is a pointer to
the activation (stack frame) requesting this nonlocal goto.

NONLOCAL GOTO$

software returnable

This condition is signalled by the PL/I nonlocal goto processor
pli$nl just prior to setting up the stack unwind (and hence prior
to the invocation of any CLEANUP$ on-units). This condition exists
to enable certain overseer software (such as the debugger) to be
informed that the nonlocal goto is occurring. The default handler
for this condition simply returns. When a procedure handling this
condition wishes to let the nonlocal goto occur, it should simply
return (without continue-to-signal set).

Info structure: same as for the BAD_NONLOCAL_GOTO$ condition.

(pseudo-condition)

An activation's on-unit for ANY$ is invoked if that activation does
not have a specific on-unit for the condition that was raised. The
condition frame header for the condition ANY$ will describe the
original condition directly; there is no separate condition frame
header for the condition ANY$ wunless ANY$ has been explicitly
raised by a call to signl$ (not a recommended practice).

Page 36

-

&

&

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

ILLEGAL_SEGNO$

hardware returnable

The process has referenced a virtual address whose segment number
is out of bounds.

ffh.fault type has the value '60'b3.
ffh.ret pb points to the faulting instruction.
ffh.fault addr is the virtual address that is in error.

No info struecture is available.

NO_AVAIL SEGS$

hardware returnable

The process has referenced a virtual address that refers to a
segment that has not yet been created. At the moment, the system
has no free page tables to assign to the segment. If .the on-unit
for this condition returns, the reference will be retried, with
some possibility of success if this or some other process has in
the meantime deleted a segment.

ffh.fault type has the value '60'b3.

ffh.ret pb points to the faulting instruction.

ffh.fault addr is the virtual address that is causing the attempted
segment creation. . ’

No info structure is available.

NULL_POINTER$

hardware returnable

The process has referenced through an IP or base register whose
segment number is '7777'b3. This is considered to be a reference
through a null pointer, although user software should always employ
the single value T777/0 for the null pointer.

ffh.fault type has the value '60'b3.

ffh.ret pb points to the faulting instruction.

ffh.fault addr contains the null pointer through which a reference
was made.

No info structure is available.

The default on-unit for this condition resignals the ERROR
condition with the appropriate info structure.

Page 37

UNDEF I
~ NED _GATES$

N

&

-

—

-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

software not returnable

The process has called an inner ring gate segment at an address
within the initialized portion of the gate segment, but there is no
legal gate at that address. This results from the fact that gate
segments must be padded to the next page boundary with "illegal”
gate entries.

No info structure is available.

ILLEGAL_INST$

hardware returnable

The process has attempted to execute an illegal instruction.

ffh.fault_type has the value '40'b3.
ffh.ret_pb points at the faulting instruction.

No info structure is available.

RESTRICTED_INST$

hardware returnable

The process has attempted to execute-an instruction whose use is
restricted to ring 0 procedures. Certain of these instructions (in
the I/0 <class) can be simulated by ring 0. An instruction which

causes this condition to be raised could not be simulated by this
mechanism.

ffh.fault_type has the value '00'b3. |
ffh.ret_pb points to the faulting instruction.

OUT_OF BOUNDS$.

hardware returnable

The process has referenced a page of some segment that has been
defined as not referencible in any ring (i.e. no main memory or
backing storage is allocated for that page, and allocation is not
permitted) .

ffh.fault_type has the value '10'Db3.
ffh.ret pb points at the faulting instruction.
ffh.fault_addr contains the offending virtual address.

No info structure is available.

Page 38

-

-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

PAGE_FAULT ERR$

hardware returnable

The process has encountered a page fault referencing a valid
virtual address, but due to a disk error, the page control
mechanism has not been able to load the page into main memory. If
the on-unit for this condition returns, the reference will be
retried, and there is some 1likelihood that the disk read will
succeed and the reference thus be completed.

ffh.fault type has the value '10'b3.

ffh.ret _pb points at the faulting instruction.

ffh.fault addr contains the virtual address the page for which
cannot be retrieved.

No info structure is available.

EXIT$

software returnable

The process has made a call to the EXIT primitive, via a direct
call or an EXIT SVC. This condition should not be handled by user
programs, since it is used by certain Primos software to monitor
the execution of Static Mode programs.

No info structure is available.

The default on-unit for this condition simply returns.

STOP$

software not returnable
The process has executed a <{stop statement> in a
higher-level-language program., This condition should not be

handled by user programs, as it is used by Prime software to ensure
the proper operation of the <stop statement> in the various
languages.

No info structure is available.
The default on-unit for this condition performs a nonlocal goto
back to the command processor which invoked the procedure which (or

one of the dynamic descendants of which) executed the <stop
statement>.

Page 39

-

-

e

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

PAUSE$

software returnable

The process has executed a <pause statement> in a Fortran program.
This condition should not be handled by user programs since it is
used by Prime software to ensure the proper operation of the
Fortran <pause statement>.

No info structure is available.

The default on-unit for this condition prints no diagnostic, but
calls a new command level.

REENTER$

software returnable

This condition is raised by the Primos REN (REENTER) command, and
is wused to reenter a subsystem that has been temporarily suspended
due to another condition (such as a quit signal). The details of
operation are left to the individual subsystems.

No info structure is available.

The default -on-unit for this condition simply returns. The REN
command will print a diagnostic if control returns to it after it
signals REENTER$, since this implies that there was no subsystem on
the stack willing to accept reentry.-

BAD_PASSWORD$

software not returnable

This condition is raised by the ATCH$$ primitive when attempting to
attach to a passworded directory with an incorrect password. This
condition is signalled non-returnably in order to increase the work
function of machine-aided password penetration.

No info struecture is available.

ENDFILE (file)

software (PL-I) returnable

This condition is raised when an end-of-file is encountered while
reading a PL/I file with PL/I I/0 statements. The value of the
onfile() builtin function identifies the file involved.

The standard PL/I condition info structure is provided (see below).

The value of info.oncode value is undefined, and info.file ptr
identifies the file on which end-of-file occurred.

Page 4o

-

-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

The default on-unit for this condition prints a diagnostic and then
resignals the ERROR condition with an info.oncode_value of 1044,

ENDPAGE (file)

KEY

software (PL-I) returnable

This condition is raised when end-of-page 1is encountered while
writing a PL/I file using PL/I I/0 statements. The value of the
onfile() builtin function identifies the file on which the
end-of-page was encountered.

The standard PL/I condition info structure is provided (see below).
The value of info.oncode value is wundefined; info.file_ptr
identifies the file in question.

The default on-unit for this condition performs a "put skip" on the
file, and then returns.

(file)
software (PL-I) returnable

The KEY condition is raised when reading or writing a keyed PL/I
file with PL/I I/0 statements, and the supplied key does not exist
(read) or already exists (write). The value of the onfile()
builtin function identifies the file in question; the value of the
onkey() builtin function contains the key in error.

The standard PL/I condition info structure is supplied. The value
of info.oncode_value is undefined; the value of info.file ptr
identifies the file in question.

The default on-unit prints a diagnostic and resignals the ERROR
condition, with an info.oncode_value of 1045.

ERROR

software (PL-I) : (varies)

This condition is a catch-all error condition defined in PL/I. The
default on-unit for most PL/I-defined conditions (such as KEY)
result in the ERROR condition being resignalled. Hence, the
programmer has the choice of handling a more- or less-specific case
of the condition.

Many I/0 and conversion operations in PL/I can result in the
raising of the ERROR condition. The standard PL/I condition info
structure is supplied. Each distinct error has been assigned a
unique value of info.oncode value. The info structure is:

del 1 info based,
2 file ptr ptr,

Page 41

¢

-

&

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

2 info_struct_len fixed bin,
2 oncode_value fixed bin,
2 ret_addr ptr;

info.file ptr
when valid, is a pointer to a PL/I file control block that
identifies the PL/I file in question in the error at hand.

info.info struct 1len
is the length, in words, of this structure. It 1identifies
both the version of the structure and the extent to which
any optional items at the end of the structure are filled
in. The present value is 6.

info.oncode value
is The unique code assigned to this particular error case.
This integer is also the value of the oncode() builtin
function when the latter is used in an on-unit 1invoked 1in
response to this error.

info.ret_addr
is a pointer to the instruction (statement) in the wuser's
program whose execution has caused this error.

The default on-unit for this condition prints a diagnostic
corresponding to the value of info,oncode_value, and calls a new
command level, unless the error is one of the arithmetic errors
that is handled "without comment™ (such as wunderflow), in which
case the " appropriate action 1is taken, and the on-unit returns
control to the point of interruption.

The specific values of info.oncode_value, and their corresponding
messages, are documented separately.

10 The Crawlout Mechanism

An event known as a crawlout occurs whenever the Condition Mechanism
reaches the end of an inner ring stack (a ring other than 3) without
finding a selectable on-unit for the condition that has been raised.
Note that a crawlout can occur even when the inner ring has an on-unit
for the condition, if that on-unit signals another condition, or if the
on-unit calls cnsig$ and returns, causing a resumption of the stack
scan.

The following terminology is wused to describe +the action of the
crawlout mechanism. The target ring is that ring from which the
present (inner) ring was entered. The condition frame is that (inner
ring) condition frame that describes the condition as it was raised in
the inner ring. The crawlout. frame is the topmost frame on the inner
ring stack; it is the crawlout frame whose return-conditions describe
the point in the outer ring from which this inner ring was entered.
Thus, we have target ring = ring (crawlout_frame -> sfh.ret_pb).

Page B2

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. é

The first step in performing a crawlout is to determine how large a
stack frame must be allocated on the target ring stack. This size is
just the sum of the size of the crawlout frame header, the machine
state header from the inner ring, the condition name, the info
structure if any, and a special auxiliary pointer area. The target
ring stack root segment number is obtained from a static table compiled
into crawl .

The target ring stack frame has the following format:

del 1 orf based, /* outer ring frame ¥/
2 crawlout_frame(ffh_size) fixed bin,
2 cofim, /¥ special data for crawlout FIM ¥/
cond name ptr ptr,
ms ptr ptr,
info_ptr ptr,
ms len fixed bin,
info_len fixed bin,
action,
4 return ok bit(1) unal,
4 inaction ok bit(1) unal,
4 erawlout bit(1) unal,
4 specifier bit(1) unal,
4 mbz bit(12) unal,
2 cond name char(32) var,
2 ms_frame(orf.ms len) fixed bin, /¥ machine state ¥/
2 info_struc(orf.info_len) fixed bin;

wwWwwww

Since ffh_size (the size of a standard ffh) is a constant, orf.cofim is
at a known offset in orf. Hence, a crawlout FIM module may find it
without requiring that it be passed as an argument. The pointers and
lengths in orf.cofim identify the 1location and size of the other
members of orf, and are used by a crawlout FIM in order to re-invoke
signl$ in the outer ring.

If sufficient space for orf cannot be found in the target ring stack, a
fatal error ("crawlout stack overflow") occurs.

The remaining steps in the crawlout process are as follows (quits are
inhibited until the start of step (11)):

(1) The crawlout frame is copied to orf.crawlout_frame. If the
crawlout frame is an ffh that does not contain valid saved
registers, then crawl_ uses the "earliest valid registers" pointer
passed to it to 1locate and copy those saved registers into
orf.crawlout_frame.

(2) The condition name is copied to orf.cond name. Space for a 32
character name is always allocated.

(3) The inner ring machine state (pointed to by cfh.ms ptr) is copied
to orf.ms frame. Because this data is always simply copied

Page 43

Specifications for PRIMOS Condition Mechanism . PE-T-468, Rev. 2

through, a multiring crawlout will carry the machine state at the
time the condition was originally raised.

(4) The info structure (if any) is copied to orf.info struc.

(5) orf.action is set by copying return ok, inaction ok and specifier
from the inner ring c¢fh.cflags; orf.action.crawlout is set to
'1'"b. orf.action will be passed to signl$ by the crawlout FIM.

(6) Unless the crawlout frame's cfh.flags.backup _inh is '1'b or the
crawlout frame is an ffh, the ret_pb in orf.crawl_frame is backed
up to point at the PCL that entered the inner ring. In this way,
if signl$ returns, the call into the inner ring is re-executed
unless prohibited by the inner ring.

(7) - The pointers and lengths in orf.cofim are set to identify the
appropriate members of the orf structure.

(8) The inner ring crawlout frame is then modified to make it appear
as though the inner ring was called by some procedure (the entry
value passed to crawl_) whose stack frame is orf.

(9) An unwind to this "activation® of step (8) is set up by a call to
unwind .

(10) If we are crawling out from ring zero, unlkf$ is called to unlock
all ring zero locks.

(11) Then crawl_ returns, causing the unwind to take place. Control
reappears in the target ring, with orf as the current stack frame,
and the procedure of step (8) in control.

(12) If the procedure of step (8) is the standard crawlout FIM crfim ,
it will simply call signl$ with the values in orf.cofim as
arguments. This raises the same condition in the target ring. If
signl$ returns, crfim_ reloads the registers if needed and simply
returns.

11 Internal Interfaces

WARNING: These internal interfaces are documented for completeness and
ease of understanding only; the interfaces are subject to change in
calling sequence, functionality, and existence.

11.1 CRAWL_
crawl Perform a Crawlout from an Inner Ring
del crawl_ entry (entry, ptr, ptr);

call crawl_ (crawl_fim, crawl_frame, regs_frame);

Page 4y

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

-

crawl fim
is an entry value representing the procedure to which control
is to be passed when the crawlout is complete. This procedure
must satisfy certain restrictions described in Notes below.
The entry value must represent an external entry since no
display pointer will be passed. (Input)

crawl frame
is a pointer to the topmost frame on the inner ring stack, to
be used as the "crawlout frame" as defined above. (Input)

regs frame
- is a pointer to the earliest frame on the current ring stack
that contains valid saved registers. The value of regs frame
will not be used if the crawlout frame is not an ffh. Usually,
- the value of crawl_frame and regs frame will be identical;
however, the raise_ internal interface returns the proper value
to pass as regs frame. (Input)

The crawlout operation is performed as described above. Control is
transferred to the procedure described by crawl fim, in the environment
of the target ring.

@m Remember that the caller of crawl_ must have a stack frame that 1is a

condition frame; that is, the procedure calling crawl_ cannot expect
to be able to overlay the cfh structure with its own automatic storage.
Mechanically, this is accomplished by including in the caller of crawl
a declaration of the form "del dummy_ entry () options (shortcall
(cfh_size))" as explained in the insert file for the c¢fh structure.

Restrictions on Crawlout FIM's

@m A crawlout FIM will not be given control via a regular hardware PCL
instruction. Therefore, it must not matter which stack root is used;
the procedure must be able to be entered in 64V addressing mode; the
procedure must expect no arguments; and the procedure must not use any
automatic storage except the words comprising orf.cofim, unless it
first extends its stack frame. These restrictions will probably make

it impossible to write a crawlout FIM in PL/I.

11.2 CSTAKS$
cstak$ Manipulate Concealed Stack (Ring 0)
del cstak$ entry (fixed bin, 1, 2 ptr, 2 bit(16) aligned,
, 2 fixed bin, 2 ptr,
N bit(1) aligned, ptr);
& call cstak$ (depth, cs_data, éog, pb_value);

Page L5

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

(@ depth
is the offset in concealed stack (CS) frames from the most
recent entry of the CS, of the CS frame to read. The value of
depth must be between 0 and (maximum CS depth - 1), inclusive,
lest a fatal process error result. (Input)
¢s_data
is a copy of the CS frame specified by depth. The ret_pb 1in
cs_data has the modified value if modification was requested.
(Output)
eog
is "1'b if the CS entry read represents an "end of group" (EOG)
frame according to the definition of a CS group; else it 1is
'0'b. (Output)
pb value
™= if null, is ignored and no modification of the CS occurs;

*

else, the ret_pb in the CS entry just read is modified to have
the value pb_value. (Input)

See the section, "Stack Unwind Protocol", for a detailed discussion of
the concealed stack.

11.3 FATAL_
fatal . Generate Fatal Process Error
del fatal entry (fixed bin) options (shortecall (4));
call fatal_ (error_code);
error_code
is a standard system error code, the corresponding message for
which will be printed on the user's terminal by ring zero as
the process' ring three environment is re-initialized. (Input)
Fatal 1is used to insulate the other interfaces of the condition
mechanism from detailed knowledge of how to generate a fatal process
error. The present fatal_ calls the ring zero gate fatal$ (which is at
a known location in the ring zero gate segment, and so requires no
linkage fault).
11.4 FNONU$

fnonu$ Find On-Unit in Given Frame

del fnonu$ entry (ptr, char(¥*) var, ptr, ptr, ptr)
returns (bit(1) aligned);

Page 46

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

cond_found = fnonu$ (frame ptr, condition name,
onunit or last ptr, catch all ptr, spec_ptr);

frame _ptr
is a pointer to the stack frame of the activation whose list of
on-units is to be searched. A stack frame that has no extended
header will be considered to have an empty on-unit 1list.
(Input)

condition name
is the name of the condltlon whose on-unit is desired. This
name may be qualified by spec ptr, as explained below. (Input)

onunit_or_last ptr

is a pointer to the specific on-unit descriptor block (if
cond found 1is '1'b), or else is a pointer to the last on-unit
descriptor block on that activation's list, making it easy to
thread a new on-unit descriptor block onto the list. If the
activation's on-unit list is empty, onunit or last ptr will be
set such that wusing it to set a next-pointer will still work
(i.e. the stack frame header is considered to contain a
"phantom" first descriptor on the on-unit list).
Onunit _or_last ptr is null if there is no extended stack frame
header present, or if the activation is "dead" by virtue of its
sfh.flags.cleanup_done being '1'b. (Output)

catech all ptr . :
if valid, is a pointer to the activations's ANY$ on-unit
descriptor block. Catch _all ptr is null if no ANY$ on-unit
exists in this activation. Catch_all ptr is invalid if
cond found is '1'b, since a spe01f1c on-unit has been found.
(Output)

spec_ptr
if non-null, this pointer qualifies condition name, and is used
to search for on-units for PL/I builtin conditions that have
file control blocks associated with them. If spec ptr is null,
it has no effect; otherwise, only an on-unit whose name
matches condition name, and whose specifier pointer 1is valid
and equal to spec:ptr, will be reported as found. (Input)

cond_found
is '"1'b if a specific on-unit for condition_name was found in
the activation, and '0'b otherwise. (Output)

Note: fnonu$ cannot be used to find an activation's on-unit for the

special condition CLEANUPS$. The item sfh.cleanup_onunit_ptr points
directly to the ECB for this on-unit, if any.

Page 417

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

€h11.5 PREVSB_
prevsb_ Get Previous Stack Frame

dcl prevsb_ entry (ptr, bit(1) aligned, bit(1) aligned, fixed bin)
returns (ptr);

previous_frame = prevsb (current frame, crawl_ flag, fix flag,
cs_depth);)

current_ frame
is a pointer to the stack frame whose immediate predecessor is
desired. (Input) '

crawl flag
is '1'b if the end of the stack has been reached and this is an
@m inner ring stack (stack in a ring less than three); else it is

'0'b. (Output)

fix flag

- is '1'b if prevsb_ is to repair the stack discontinuity that
occurs when the Primos Command Loop invokes a so-called Static
Mode program, and is '0'b if prevsb_ is merely to "hide" this
discontinuity instead of actually fixing it. This argument
gm should have the value '1'b only when called from Primos Command
Loop procedures that explicitly know when to perform this

function, and from the procedure unwind_. (Input)

¢s depth
- is the frame offset of the next frame on the Concealed Stack to
consider. The first call to prevsb_should pass c¢s_depth equal
to 0. Thereafter, prevsb_ will update cs_depth as appropriate.
See the section, "Stack Unwind Protocol" for a description of
- how the Concealed Stack is used. (Input/Output)

previous frame .
is a pointer to the stack frame that 1is the immediate
predecessor of current frame, except when the end of the stack
has been reached, in which case null is returned. (Output)
Note that prevsb_ has explicitly been given knowledge that enables it
to make it appear that a Static Mode program's stack is part of the
ring three stack (even though, physically, this may not be so).
11.6 RAISE_
raise_ Raise a Specific Condition

@h del raise_entry (bit(1) aligned, ptr, ptr);

call raise_ (crawlout_needed, crawl_frame, regs_frame);

Page 48

-

«

-

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

crawlout needed
is '"1'b if the scan of the stack for an on-unit for the
condition has reached the end of the stack, indicating the need
for a crawlout. If '0'b, indicates that the on-unit was
invoked and has now returned. Procedure raise does not check
cfh.cflags.return ok; this must be done by the caller of
raise_. (Output)™

crawl frame ,
points to the topmost frame on the stack of the current ring,

when crawlout needed 1s '1'b. This value is suitable to be
passed to the «crawl_ procedure to perform the crawlout.
(Output)

regs frame
is a pointer to the earliest frame on the current ring stack
that contains valid saved registers. This value is suitable to
be passed to the entry crawl_ to effect a crawlout. (Output)

The stack frame of the caller of raise must be a condition frame and
must describe the condition to be signalled. Raise_ does not check to
be sure that its caller's frame meets these requirements. Raise_will,
however, process cfh.cflags.continue_sw, so that a single call to
raise_ 1is sufficient to invoke all on-units for the condition in that
ring that are logically required to be invoked.

11.7 UNWIND_
unwind_ Set Up Stack Unwind for Nonlocal Goto
del unwind_ entry (label) returns (bit(1) aligned);

unwind_ok = unwind_ (target of nl goto);

target of nl goto
is the 1label variable representing the statement and the
activation to which it is desired to transfer control. Note
that this mechanism cannot be used to transfer control into an
inner ring from an outer ring, although it can be used to
perform a crawlout to the most recent activation of the ring
that called the current ring. (Input)

unwind_ ok
is '1'b if the unwind has been properly set up, and '0'b if the
label target_of nl goto has an invalid activation (stack)
pointer or if the stack in the current ring has been damaged,
or if the target activation has already been cleaned up.
(Output) ’

Page 49

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

Unwind_ performs only the manipulation of the stack necessary to
precipitate the unwind operation, and then returns to its caller. In
addition, however, unwind will invoke the CLEANUP$ on-unit, if any, in
every activation being aborted by the nonlocal goto. After each
CLEANUP$ on-unit (if any) returns, the activation's
sfh.flags.cleanup_done is set to '1'b.

When the caller of unwind itself returns, the stack will be unwound
and control will arrive at the point specified by target of nl goto.

12 Stack Unwind Protocol

Whenever it 1is necessary to unwind a stack (either partially or
completely), it must be realized that the Concealed Stack may actually
be a part of the process' stack history even though it is not
physically threaded into the stack. This occurs when a CALF
instruction encounters a fault (such as page fault, segment fault,
process abort, and so on) before the fault frame on the real stack has
been constructed. It is in fact possible for, there to be multiple such
instances (e.g. the CALF for pointer fault encounters a segment fault,
whose CALF in turn encounters a page fault).

When unwinding the regular stack, therefore, the Concealed Stack must
be unwound as well, if that is appropriate. The following algorithm is
used when contemplating a stack frame, to decide if that frame resulted
from such a faulted CALF.

First, we define a Concealed Stack Group (CSG) as the one or more CS3S
frames that intervene between two frames on the real stack. It can be
seen that all frames in a CSG are in a sense "caused" by the original
CALF instruction that did not complete. Therefore, when unwinding, the
next CSG must be unwound as a group, since there are no other
intervening real stack frames between members of the CSG.

The end of a CSG (called the "end of group" or EOG frame) has been
reached when that frame's ret _pb points to a higher ring, or does not
point to a CALF instruction.

The unwinding algorithm is as follows:

(1) Consider the next frame (working backward in time) on the stack,
starting with the caller of unwind . If this is the son of the
target frame, invoke its CLEANUP$ on-unit if any, and goto step
(5) *

(2) If this stack frame is not a fault frame, there can be no CSG
between it and the previous real stack frame, so clean this frame
up by invoking its CLEANUP$ on-unit if any, and setting its
sfh.ret_pb to point at a PRTN instruction. Goto (1).

(3) If ffh.ret pb does not point at a CALF instruction, then clean up

Page 50

—iu

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

@m the frame as in step (2), and goto step (1).

(4) Else set ffh.ret pb to point to the CALF entry point, which will
simply remove the CSG from the CS and Then execute a PRTN. Goto
step (1).

(5) I[This is the son of the Target Frame] If this frame is not a
fault frame, then set sfh.ret pb to point at the target label.
Exit.

(6) If ffh.ret pb does not point at a CALF instruction, or if ring
(ffh.ret pb) is greater than the current ring, then reset

sfh.ret pb as in step (5), and exit. (No inner ring CS entries
exist).

(7) Else if this is a crawlout, modify the son of the EOG frame in
this CSG so that its ret pb points to the target label. Then

@h point this ffh.ret pb at the entry point CALFT_, which will remove
all but the EOG frame from the CS and transfer to the target label
(which is now contained in the son of the EOG frame). Exit.

(8) Else this is not a crawlout. Perform step (7), except modify the
ret pb of the EOG frame itself to point at the target label. This
e will result in the entire CSG being removed from the CS. Exit. :

™ Note that there is currently no way for software other than the
- unwinder to automatlcally trace the stack history through the concealed
stack.

13 A PL/I Example

The hypothetical problem: provide a program with an on-unit for the
condition POINTER$ FAULT that will fix the faulting pointer to point at
o a (possibly long-integer) zero, and retry the instruction that faulted.

Solution:
problem: proc;
del mkonu$ entry (char(¥*) var, entry) options (shortecall (18)),

long zero fixed bin(31) static init (0),

ptr_ fault char(14) var static init ('POINTER_FAULT$');

$INSERT del for ffh
$INSERT decl_for_cfh

/* Set up the on-unit for POINTER_FAULT$. ¥/
L call mkonu$ (ptr fault , ptr_handler);

@h /* Now perform whatever computations might pointer-fault. */

Page 51

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev.

/*¥ Having done them, return. ¥/

a

/* On-unit for POINTER FAULT$. Correct the faulting pointer to
point at long_zero, and restart at the point of interruption. %/

return;

ptr_handler: proc (cp);
del cp ptr; /% pointer to cfh ¥/

dcl msp ptr; /% local copy of machine state ptr ¥/
dcl based ptr ptr based;

msp = cp -> cfh.ms ptr;
msp -> ffh.fault addr -> based_ptr = addr (long_zero);

g& /¥ The above uses the hardware-saved pointer to the faulting pointer,
which is found in the machine-state ffh, to reset the bad pointer.
We then simply return, causing the instruction to be re-executed.
return;
end; /¥* ptr_handler ¥/

& end; /% problem ¥/ .

14 A Fortran Example

The hypothetical problem: provide a subroutine A with a handler for
the QUIT$ condition, which will set a particular common variable QUITX
to 1 and return to the point of interruption. Presumably, at some
later time, A or some other routine in the subsystem would interrogate

@R QUITX to see if a quit happened.
Solution:

SUBROUTINE A

c
EXTERNAL B /* ON-UNIT FOR QUIT$
STACK HEADER 34
COMMON /COM/ AA, BB, QUITX, CC, DD
INTEGER*2 AA, BB, QUITX, CC, DD
c
C.. SET UP THE ON-UNIT.
c
CALL MKON$F ('QUIT$', 5, B)
c
C.. COMPUTE UNDER PROTECTION OF B.
™ C
R

Par

2

¥

§’

Specifications for PRIMOS Condition Mechanism

c
C.. INTERROGATE QUITX TO SEE IF WE GOT A QUIT.
c -
IF (QUITX .NE. 1) GOTO 1000 /% NO QUIT
C
C.. A QUIT OCCURRED, DO SOMETHING ABOUT IT.
C
c.....l..l...‘.
C
1000 CONTINUE
RETURN
END
SUBROUTINE B (CP) /* ON-UNIT FOR QUITS$
C
INTEGER*Y4 CP /%¥ PTR TO CONDITION FRAME
C
COMMON /COM/ AA, BB, QUITX, CC, DD
INTEGER#2 AA, BB, QUITX, CC, DD
C

QUITX = 1 /* SET QUIT-SEEN FLAG

RETURN /* AND RETURN TO POINT OF INTERRUPT

END

PE-T-468, Rev. 2

	Cover Page
	1
	Table of Contents
	2
	Introduction to the Condition Mechanism
	On-Units
	3
	Invocation of On-Units
	Possible Actions of an On-Unit
	4
	Using the Condition Mechanism from Fortran
	5
	6
	Default On-Units and Cleanup On-Units
	7
	System Primitive Interfaces to the Condition Mechanism
	8
	-- signl$
	9
	10
	-- mkonu$
	11
	-- rvonu$
	12
	-- onsig$
	13
	-- mkon$f
	14
	15
	-- rvon$f
	16
	-- sgnl$f
	17
	18
	-- mklb$f
	19
	-- pl1$nl
	20
	Data Structure Formats
	-- The Condition Frame Header
	21
	22
	23
	24
	-- The Extended Stack Frame Header
	25
	26
	-- The Standard Fault Frame Header
	27
	28
	29
	-- The On-Unit Descriptor Block
	30
	System-Defined Conditions
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	The Crawlout Mechanism
	42
	43
	Internal Interfaces
	-- CRAWL_
	44
	-- CSTAK$
	45
	-- FNONU$
	46
	47
	-- PREVSB_
	-- RAISE_
	48
	-- UNWIND
	49
	Stack Unwind Protocol
	50
	A PL/I Example
	51
	A Fortran Example
	52
	53

