
S p e c i f i c a t i o n s f o r PRIMOS C o n d i t i o n Mechanism P E - T - 4 6 8 , Rev. 2

DATE :

TO:

FROM:

SUBJECT:

REFERENCE:

March 2 9 , 1979

R & D P e r s o n n e l

B r a d f o r d E. Hampson

S p e c i f i c a t i o n s f o r PRIMOS C o n d i t i o n Mechanism

None

A b s t r a c t

P E - T - 4 6 8 , Rev. 2 documen t s t h e PRIMOS C o n d i t i o n H a n d l i n g Mechanism.
Both u s e r - l e v e l and i m p l e m e n t a t i o n - l e v e l i n f o r m a t i o n i s i n c l u d e d . The
C o n d i t i o n Mechanism r e p r e s e n t s a m a j o r d e p a r t u r e from p r i o r m e t h o d s o f
h a n d l i n g r u n t i m e e r r o r s i n PRIMOS.

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

Table of Contents

1 Introduction to the Condition Mechanism 3

2 On-Units 3

3 Invocation of On-Units 4

4 Possible Actions of an On-Unit 4

5 Using the Condition Mechanism from Fortran 5
5. 1 Datatype Incompatibilities 6

5.2 Interfaces for Nonlocal Goto's 6

6 Default On-Units and Cleanup On-Units 7

7 System Primitive Interfaces to the Condition Mechanism 8

8 Data Structure Formats 21
8.1 The Condition Frame Header (CFH) 21
8.2 The Extended Stack Frame Header 25
8.3 The Standard Fault Frame Header 27

8.4 The On-Unit Descriptor Block 30

9 System-Defined Conditions *. 31

10 The Crawlout Mechanism 42

11 Internal Interfaces 44
11.1 CRAWL_ 44
11.2 CSTAK$ 45
11.3 FATAL 46
11.4 FNONU? 46
11.5 PREVSB_ 48
11.6 RAISE_ 48
11.7 UNWIND_ \ . 49

12 Stack Unwind Protocol 50

13 A PL/I Example 51

14 A Fortran Example 52

Page

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

1 Introduction to the Condition Mechanism

The notion of the "condition" comes from the corresponding concept in
the PL/I language. A condition is basically an unscheduled software
procedure call (or block activation) which is brought about by the
occurrence of some unusual event in a process. Examples of this are
hardware-defined faults (such as arithmetic exceptions), detection by a
subroutine of a hopeless error situation which cannnot be adequately
described to the subroutine's caller through available parameters, and
Quits from the user terminal (converted by Primos into a
hardware-defined fault).

Conditions are particularly useful in two basic circumstances: when
caused by an unpredictable hardware fault, and when the call-return
flow of control is not known by the routine detecting the unusual
happening.

The implementation of the condition mechanism described here is
intended to serve three purposes: to provide a consistent and useful
means for system software to handle error conditions and to manage a
reentrant/recursive command environment; to provide user programs with
the capability to handle error conditions that heretofore forced a
return to command level; and to provide support for the condition
mechanism of ANSI PL/I.

2 On-Units

An "on-unit" is a handler for a condition, and may either be a
prodecure (an "entry variable" in PL/I terminology), or a begin-block.
The latter result from execution of the PL/I <on statement>, while the
former result from explicit invocation of the system primitives mkonu$
and mkon$f. The only way to cause creation of an on-unit in a non-PL/I
program is to explicitly call the system primitives mkonu$ or mkon$f.
At various times, system software will create its own on-units for
system-defined conditions.

A procedure may also act to invalidate, or "revert", an on-unit it «had
previously created. In PL/I, this can be done by means of the <revert
statements The reversion of an on-unit can also be accomplished by
calling the system primitives rvonu$ or rvon$f. Note that such a
reversion applies to the current activation only; the on-unit(s) for
the same condition created by activations earlier in the stack are not
affected.

Every on-unit is associated with a given activation, which is simply
the particular invocation of the procedure Tor begin block) that
requested creation of the on-unit. Associated with every on-unit is
the name of the condition for which the on-unit is a handler. These

^ condition names are character strings of up to 32 characters, and may
represent system-defined conditions if the name is one of those

preserved for system use, or it may be a user-defined condition.

Page

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

The condition mechanism is activated whenever a condition is raised.
In PL/I terms, a condition is raised either explicitly as the result of
a <signal statement>, or implicitly as the result of some error having
been detected during regular computation. Note that in this context,
"error" is to be taken loosely: "end of file" is one such "error".

A condition may be raised by the execution of a PL/I <signal
statement>, or by an explicit call to the system primitives signl$ or
sgnl$f. In some cases, such as conversion of hardware faults to
conditions, this call is executed by system software and so is
invisible to the user: from the user's point of view, a hardware fault
is a condition signal.

3 Invocation of On-Units

When a condition is raised, the Condition Mechanism must first find an
on-unit for that condition. It does this by searching the stack
backward in time, starting from the activation belonging to the
prodecure that raised the condition. If an activation has an on-unit
for the specific condition name that was raised, that on-unit is
selected. If an activation does not have an on-unit for the specific
condition, but does have an on-unit for the special condition ANY$,
that activation is said to have a default on-unit, and the ANY$ on-unit
is selected. Scanning is temporarily suspended at the first activation
containing a selectable on-unit, and that on-unit is invoked.

A selected on-unit is invoked according to the following specification:

del" on_unit entry (ptr) variable; *

call on_unit (ptr_to_cond_frame);

That is, all on-units are passed a single argument which is a pointer
to the Standard Condition Frame Header that describes the condition
that was raised. Note that an on-unit operates as if it had been
invoked from the activation which created it, so that if the on-unit
procedure is internal to that activation, the normal PL/I scoping rules
for automatic storage (and all other storage classes) apply.

4 Possible Actions of an On-Unit

In the general case, an on-unit has several options as to what action
it can take. It may, of course, perform any desired
application-specific tasks, such as closing file units, deleting
temporary files, updating databases, doing consistency checks, and so
on in order to abort the computation that has been interrupted. In
many cases, however, it may be possible for the on-unit to repair the
cause of the condition (or even to determine that the condition can be
safely ignored), or to decide that the computation's normal flow can be
interrupted and the program reentered at some "known" point.

Page

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

If permitted by the signaller of the condition, the on-unit may simply
return, in which case the computation will continue from the point of
the signal or hardware fault. If the signaller has forbidden such a
return, an attempt to do it will result in a signal of the condition
ILLEGAL_ONUNIT_RETURN$. There are information bits in the condition
frame header (see below) that inform the on-unit as to whether return
is permitted (this information is implicit in the name of most
system-defined conditions), and whether it will in general make sense
to return without having taken "corrective action".

An on-unit may perform a nonlocal goto to some previously defined
label, that will cause the program to restart in some known state.
This action may always be taken, as the activation that caused the
condition to be raised will usually be aborted by the nonlocal goto,
and hence the issue of on-unit return does not arise.

An on-unit may also signal another (possibly the same, but beware of
infinite recursion) condition, and it may either permit or deny return
from that condition.

The on-unit may decide to get the process to command level, to allow
the user to take control. The system default on-unit is an example of
an on-unit that does exactly that. If the user enters the "start"
command, the new command level will return to the invoking on-unit.

Finally, the on-unit may decide that it has not been able to handle the
condition after all, "or that it has only partially done so, and needs
help from an on-unit established by one of its dynamic ancestors. The
on-unit instructs the condition mechanism that it desires to "continue
to signal", and then simply returns. The condition mechanism will then
continue to scan up the stack for more on-units for the condition.

5 Using the Condition Mechanism from Fortran

Since Fortran is not a block-structured language, the use of on-units
(condition handlers) and of nonlocal goto's from Fortran is somewhat
restricted. In particular, there are no internal procedures or blocks
in Fortran, leaving external procedures (subroutines) as the only
possibilities for service as on-units. The fact that a Fortran
statement label value does not contain an activation (stack) pointer
means that nonlocal goto's work in a way different from PL/I (see
below).

To summarize the restrictions:

o Fortran on-units must be SUBROUTINES, which may not, of course,
be internal to the subroutine or main program making the
on-unit.

o Nonlocal goto's are defined in Prime Fortran to work only if
the target statement label belongs to the caller of the
subroutine performing the nonlocal goto. That is, nonlocal

Page 5

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

goto's work only to the previous stack level.

5. 1 Datatype Incompatibilities

The PL/I interfaces to the condition mechanism utilize the PL/I
datatype "characterC*) varying". This datatype in not available in
Fortran (either 1966 or 1977 ANSI standard). The 1977 ANSI Fortran,
however, includes a datatype that is the equivalent of PL/I
"characterC*) nonvarying".

For these reasons, a set of interfaces to the condition mechanism is
provided which utilizes nonvarying character strings. The user is
cautioned that these interfaces will not be as efficient as those using
the varying character strings. It is possible to simulate varying
character strings in Fortran by using appropriate equivalences.

The Prime representation for a varying character string is equivalent
to an integer*2 array in which the first element contains the character
count, and the remaining elements contain the characters in packed
format. To illustrate:

PL/I:
del name char(5) varying static initial (,QUIT$I);

Fortran:
INTEGER*2 NAME(4)
DATA NAME /5, ,QUIT$1/

5.2 Interfaces for Nonlocal Goto's

A full-function nonlocal goto requires that the target label identify
both a statement and an activation (stack frame) of the program that
contains the statement. If such a nonlocal goto is required in a
Fortran program, the following interfaces can be used.

The procedure MKLB$F is called by a program to create a PL/I-compatible
label pointing to one of its statements. The activation pointer in the
label will identify the caller's activation.

The procedure PL1$NL will perform a nonlocal goto to a specified target
label. Labels produced by MKLB$F are acceptable to PL1$NL.

The calling sequences for these routines are described below.

Page

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

6 Default On-Units and Cleanup On-Units

The CLEANUP? Condition

The special condition CLEANUP? is used only during processing of a
nonlocal goto (or a crawlout from an inner ring). Any activation may
make an on-unit for the condition CLEANUP?, which will be invoked only
when that activation is about to be aborted by a crawlout or simple
nonlocal goto.

The CLEANUP? on-units of the activations on the stack are invoked in
reverse chronological order. Each CLEANUP? on-unit is expected to
return unless it encounters a fatal error. No activation's stack frame
is removed from the stack until all activations have been cleaned up
(i.e. all CLEANUP? on-units have returned).

An on-unit for CLEANUP? may perform any operation desired, but most
common will be such things as closing file units, freeing generations
of storage that have been allocated in static areas, and so on.

The Condition mechanism cannot guarantee that the CLEANUP? on-unit in a
given activation will not be invoked more than once, but it can and
does guarantee that, once a CLEANUP? on-unit has returned to the
Condition Mechanism and that activation has been marked "cleaned up",
invocation of any of that activation's on-units (including CLEANUP?),
as well as transfer of control into that activation by means of a
further nonlocal goto, are prevented.

The ANY? Condition . •

An on-unit for the condition ANY? is called a "default on-unit". A
procedure creates an on-unit for ANY? in the normal manner (PL/I <on
statement>, or a call to mkonu? or mkon?f), whenever it wishes to
intercept any condition that might be signalled during its activation.

When a given activation is reached during the stack scan associated
with the raising of a condition, it is first examined for an on-unit
for that specific condition. That on-unit is selected for invocation
if it exists. If the activation has no specific on-unit, but does have
an on-unit for ANY?, then the ANY? on-unit is selected for invocation.
The Standard Condition Frame Header passed to the ANY? on-unit
describes the original condition because of which the on-unit is being
invoked.

Hence, a procedure's default (ANY?) on-unit is invoked only if the
procedure has no specific on-unit for the given condition.

User programs should not include an ANY? on-unit unless truly
(necessary. A user ANY? on-unit should not attempt to handle most
^ system conditions, but rather should "pass them on" by simply

returning. The continue switch (cfh.cflags.continue_sw) is set
^ automatically whenever an ANY? on-unit is invoked. Any user ANY?

on-unit that fails to return with the continue switch still set, may

Page 7

Speci f ica t ions for PRIMOS Condition Mechanism PE-T-468, Rev. 2

cause IMPROPER OPERATION of user or Prime software a t some future
re lease of the system.

7 System Pr imi t ive In te r faces to the Condition Mechanism

The following sect ion documents new dynamically-l inked c a l l s t ha t have
been made ava i l ab le so tha t V-mode programs may use the Condition
Mechanism. Note tha t i t i s not poss ib le for R-mode programs to use any
of these i n t e r f a c e s .

Page

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

Signal Specific Condition
j signl$ i i signl$

System Primitive 03-09-79

Name: signl$

Purpose:

The primitive signl$ is called in order to raise a specific condition
in the ring of the caller. The stack is scanned backwards in order to
find an on-unit for this condition, or a default (ANY$) on-unit. The
first such on-unit found is invoked according to the specification
given in PE-T-468, "Invocation of On-Units". The on-unit has the
option of signalling another condition; of calling the primitive
cnsig$ to request that the stack scan for on-units continue and then
returning; of performing a nonlocal goto; and it may have the option
of simply returning, in which case the processing of the condition is
considered complete and signl$ returns to its caller.

If signl$ is called from a procedure executing in an inner ring (a ring
less than 3), and no on-unit or default on-unit is found in that inner
ring, an event known as a crawlout occurs. See "PE-T-468, The Crawlout
Mechanism" for further details.

Usage:

del signl$ entry (chart*) var, ptr, fixed bin, ptr, fixed bin,
bit(l6) aligned);*

call signl$ (condition_name, ms_ptr, ms_len, info_ptr,
info_len, action);

condition_name
is the name of the condition to be signalled. (Input)

ms_ptr
i s a pointer to an sfh, ffh or cfh s t r u c t u r e defining the
machine s t a t e at the time the event occurred which makes
necessary t h i s c a l l to s ign l$. If ms_ptr i s n u l l , s ignl$ wi l l
use a pointer to the cfh produced by the c a l l to s i g n l $.
(Input)

i s the length in words of the s t r u c t u r e pointed to by ms_ptr.
If ms p t r i s n u l l , the value of ms_len i s not examined.
(InputT

info_ptr
is a pointer to an arbitrary structure containing auxiliary
information about the condition. The format of this structure
need be known only to those procedures that will raise or
handle this condition. If no auxiliary information is

Page 9

ms len

Speci f ica t ions for PRIMOS Condition Mechanism PE-T-468, Rev. 2

a v a i l a b l e , info_ptr should be n u l l . (Input)

info_len
i s the length of the s t r u c t u r e pointed to by in fo_p t r , in
words. If info p t r i s n u l l , the value of info_len i s not
examined. (InputT

action
has the following internal structure:

del 1 action,
2 return_ok bit(1) unal,
2 inaction_ok bit(1) unal,
2 crawlout bit(1) unal,
2 specifier bit(1) unal,
2 mbz bit(12) unal;

Action.return_ok should be M'b if the on-unit is to be allowed
to return. Action.inaction_ok, if M'b, informs a potential
on-unit that it may return without taking any corrective action
and still expect "defined" results. (Return_ok must be M'b if
inaction_ok is M'b). Action .crawlout is M'b if this call to
signl$ is the result of a crawlout. This bit should never be
set by a user program in a call to signl$, but signl$ has no
way to enforce this restriction. Action .specifier is M'b to
signal a PLIO condition. The first member of the info
structure must be the appropriate specifier . pointer.
Action.mbz must be 'O'b. (Input)

User programs shoud never attempt to signal a PLIO condition (that is,
action .specif ier should never be M'b).

The blocks of storage identified by (ms_ptr, ms_len) and (info_ptr,
info_len) will be copied onto the outer ring stack if a crawlout
occurs. In general, however, a PLIO condition should not be signalled
in an inner ring, as the file control block may be inaccessible to the
outer ring(s).

Page 10

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

JPN Make an On-Unit
^ j mkonu$! i mkonu$!

System Primitive 03-09-79

Name: mkonu$

Purpose:

The primitive mkonu$ is called by a procedure or begin block when it
wishes to create an on-unit for a specific condition, or a default
on-unit (an on-unit for the condition ANY$).

Usage:

del mkonu$ entry (char(*) var, entry)
opt ions (s h o r t c a l l (18)) ;

c a l l mkonu$ (condition_name, on_uni t_entry) ;

*

condition_name
is the name of the condition for which the activation desires
to create an on-unit. If the activation already has an on-unit
for this condition, the previous on-unit is overwritten by this
new one. (Input)

*• on_unit_entry
is an entry value representing the on-unit procedure to be
invoked when condition_name is raised and this activation is
reached in the stack scan. Because mkonu$ does not save the
display pointer associated with on_unit_entry, the entry value
must be external or internal to the block calling mkonu$. Note
that an entry constant that is declared in the block containing
the call to mkonu$ must necessarily satisfy these restictions.
(Input)

Notes:

The stack frame of the caller is grown, if necessary, to add the
descriptor block for the new on-unit.

The value of <condition_name> must not contain trailing blanks.

The caller must guarantee that the generation of storage occupied by
condition_name will not be freed until after the caller returns or its
activation is aborted by a nonlocal goto. For PL/I callers, this
implies that condition name may not be a constant.

Page 11

Speci f ica t ions for PRIMOS Condition Mechanism PE-T-468, Rev. 2

Revert an On-Unit
! rvonu$! | rvonu$!

System Pr imi t ive 09-26-78

Name: rvonu$

Purpose:

This p r imi t ive i s ca l led by an ac t iva t ion whenever i t wishes to rever t
an on-uni t i t had previously c rea ted . A rever ted on-uni t i s ignored
when scanning the stack for an on-uni t for a condi t ion t ha t has been
ra i sed . The only way to r e - i n s t a t e a rever ted on-uni t i s to issue
another c a l l to mkonu$.

Usage:

del rvonu$ entry (char(*) var);

call rvonu$ (condition_name);

condition_name
is the name of the condition whose on-unit in this activation
(if any) is to be reverted. (Input)

Notes:

There is no effect if an activation attempts to revert an on-unit for a
condition when that activation has no on-unit for the condition, or if
that activation had already reverted its on-unit for the condition. In
no case will a call to rvonu$ affect on-units in any other activation.

/iffN

Page 12

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

Set Continue-To-Signal Switch
! cnsig$ | ! cnsig$ i

System Primitive 09-26-78

Name: cnsig$

Purpose:

The primitive cnsig$ is called by an on-unit when that on-unit has not
been able to completely handle the condition because of which it was
invoked. After calling cnsig$, the on-unit should return, at which
point the Condition Mechanism will resume scanning the stack for more
on-units for the condition that was raised.

Usage:

del cnsig$ entry (fixed bin);

call cnsig$ (status);
*

status
is a standard system error code, and will be nonzero only if
there was no condition frame found in the stack in which to set
the continue_sw.

Notes:

Multiple calls to cnsig$ by the same on-unit prior to returning to the
Condition Mechanism will have the same effect as a single call.

The continue switch is automatically set whenever an ANY$ on-unit is
invoked. Such an on-unit, therefore, need not call cnsig$ in order to
continue to signal.

Page 13

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

! mkon$f !

Name:

Make an On-Unit (Fortran)

System Primitive

mkon$f

03-09-79
mkon$f 1

Purpose:

The primitive mkon$f performs the same function as mkonu$; that is, an
on-unit for a specified condition name is created for the calling
procedure or block. This interface, however, avoids use of varying
character strings and so may be more convenient for Fortran and other
languages. WARNING: this interface is substantially less efficient
than mkonu$, both in terms of stack space and execution time.
Applications where these are important should use mkoun$.

Usage:

CALL MK0N$F (CNAME, CNAMEL, UNIT)
EXTERNAL UNIT
INTEGER*2 CNAME (—), CNAMEL

CNAME

CNAMEL

UNIT

is an array containing the name of the condition for which an
on-unit is desired. (Input)

is the length in characters of CNAME. (Input)

is an external subroutine (or procedure) which is to become the
on-unit handler for this condition. This subroutine will be
invoked with one argument as follows:

CALL UNIT (CP)
INTEGER*4 CP

where CP is a pointer to the condition frame header (cfh) that
describes the condition.

Notes:

IMPORTANT: any program compiled by the FTN compiler that makes a call
to mkon$f, must include the specification statement "STACK HEADER 34",
and be compiled with the -SPO option. This reserves the stack space
necessary for on-unit data. If mkonu$ is used, its SHORTFALL
specification will reserve the needed space.

The comments in the writeup on mkonu$ apply to mkon$f as well, with the
exception that CNAME and CNAMEL may be overwritten by the caller once
mkon$f has returned, because they are copied into a stack frame
extension by mkon$f.

Page 14

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

Note that every call to mkon$f allocates additional stack space to hold
a copy of CNAME, even if the caller had previously called mkon$f with
the same values of CNAME and CNAMEL.

Page 15

Speci f ica t ions for PRIMOS Condition Mechanism PE-T-468, Rev. 2

Revert On-Unit (Fortran)
i rvon$f I I rvon$f |

System Pr imi t ive 03-09-79

Name: rvon$f

Purpose:

The pr imi t ive rvon$f r e v e r t s an on-uni t for a spec i f i c condit ion in the
c a l l e r ' s a c t i v a t i o n . I t i s i den t i ca l in e f fec t to rvonu$. WARNING:
t h i s in t e r face i s l e s s e f f i c i e n t in execution time (and temporary stack
space used) than i s rvonu$; t ime- or s p a c e - c r i t i c a l app l i ca t ions may
wish to use rvonu$ in s t ead .

Usage:

CALL RV0N$F (CNAME, CNAMEL)
INTEGER*2 CNAME(—) , CNAMEL

CNAME
is the name of the condition whose on-unit in the caller's
activation is to be reverted. (Input)

CNAMEL
is the length in characters of CNAME. (Input)

Notes:

All comments that apply to rvonu$ also apply to rvon$f.

c

Page 16

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

sgnl$f !
Signal Specific Condition (Fortran)

System Primitive 03-09-79

Name; sgnl$f

! sgnl$f I

Purpose:

The primitive sgnl$f is used to signal a specific condition, supplying
optional auxiliary information with the signal. A call to sgnl$f is
equivalent in effect to a call to signl$. WARNING: this interface is
less efficient in execution time (and temporary stack space used) than
signl$; time- or space-critical applications may wish to use signl$.

Usage:

CALL SGNL$F (CNAME, CNAMEL, MSPTR, MSLEN, INFOPT,
INFOLN, FLAGS)

INTEGER*2 CNAMEC—), CNAMEL, MSLEN, INFOLN, FLAGS
INTEGER*4 MSPTR, INFOPT

CNAME

f* CNAMEL

MSPTR

MSLEN

INFOPT

L

INFOLN

FLAGS

is the name of the condition to be signalled,
integer array containing the character string.

is the length of CNAME in characters. (Input)

CNAME
(Input)

is an

is an integer**! datum containing a hardware Indirect Pointer to
a stack frame describing the machine state at the time the
condition was detected. User callers will not usually know
this value, and if not should pass the null pointer value
7777/0, which as an octal constant is :1777600000. (Input)

is the length in words of the machine state stack frame header.
(Input)

is a pointer (same format as MSPTR) to a user-supplied
information array. This array can be in any format. If the
array is contained in the variable X, a pointer to it is passed
by the nonstandard expression LOC(X). Callers should pass the
null pointer (see above) if no information array is being
supplied. (Input)

is the length in words of the information array pointed to by
INFOPT. (Input)

is an integer datum specifying certain control actions to

Page 17

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

SGNL$F. If bit 1 (: 100000) is set, the on-unit may return. If
bit 2 (:040000) is set, the on-unit need not take any
corrective action before returning. All other bits will
usually be 0 (but see the writeup on signl$ for a full
description). (Input)

Page 18

Speci f ica t ions for PRIMOS Condition Mechanism PE-T-468, Rev.. 2

Make Label Value (Fortran)
**I mklb$f ! 1 mklb$f !

System Pr imi t ive 03-09-79

Name: mklb$f

Purpose:

The pr imi t ive mklb$f i s ca l led to convert a Fortran statement label or
in teger var iab le t ha t has been assigned a statement l abe l va lue , in to a
PL/I-compatible l abe l va lue . This value can then be used to cause a
fu l l - func t ion nonlocal goto in a Fortran program.

Usage:

CALL MKLB$F (STMT, LABEL)
INTEGER*2 STMT
REAL*8 LABEL

is either a variable to which a statement number has been
assigned by an ASSIGN statement, or else is a statement number
constant of the form $xxxxx. (Input)

LABEL
will be set to a PL/I-compatible label value identifying the

f^ statement STMT in the activation of the caller of MKLB$F.
(Output)

STMT

Page 19

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

Generate Nonlocal Goto
pl1$nl ! i pl1$nl

System Primitive 03-09-79

Name: pl1$nl

Purpose:

This primitive performs a full-function nonlocal goto to the activation
and statement identified by a supplied label value. Label values
created by calls to mklb$f are suitable arguments to pl1$nl.

Usage:

CALL PL1$NL (LABEL)
REAL*8 LABEL

LABEL
is a PL/I-compatible label value (such as is produced by
mklb$f). Pl1$nl will cause a nonlocal goto to the statement
and activation identified by LABEL. (Input)

/0$$\

\^

Page 20

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

8 Data Structure Formats

The sections below describe the data structures associated with the
Condition Mechanism. Any user program that uses these structures
should examine the version number in the structure (if one is
provided); if the format of a structure changes, the version number
will be incremented. The user program can then take appropriate action
if it is presented with structures of different formats.

8.1 The Condition Frame Header (CFH)

The following declaration shows the format of the Standard Condition
Frame Header:

del 1 cfh based, /* standard condition frame header */
2 flags,

#^ 3 backup_inh bit(1),
3 cond_fr bit(1),
3 cleanup_done bit(1),
3 efh_present b i t (1) ,
3 user_proc b i t (1) ,
3 mbz b i t (9) ,
3 fau l t_ f r b i t (2) ,

2 roo t ,
^ 3 mbz b i t (4) ,
r 3 seg_no bit(12),

2 ret_pb p t r ,
2 re t_sb p t r ,
2 r e t_ lb p t r ,
2 re t_keys b i t (l 6) a l igned,
2 a f te r_pc l fixed bin ,
2 hdr_reserved(8) fixed b in ,
2 owner_ptr p t r ,

^ 2 c f l a g s ,
f* 3 crawlout b i t (1) ,

3 continue_sw b i t (1) ,
3 return_ok b i t (1) ,
3 inaction_ok b i t (1) ,
3 spec i f i e r b i t (1) ,
3 mbz b i t (1 1) ,

2 version fixed bin ,
2 cond_name_ptr p t r ,
2 ms_ptr p t r ,
2 info_ptr p t r ,
2 ms_len fixed b in ,
2 info_len fixed b in ,
2 saved__cleanup_pb p t r ;

f̂ flags.backup_inh
wi l l always be *0'b in a condit ion frame. I t i s used in

Page 21

V

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

regular call frames to control program counter backup on
crawlout from an inner ring.

flags.cond_fr
identifies this frame as a condition frame, and will thus be
M 'b.

flags.cleanup done
i s ' TH) when t h i s ac t iva t ion has been "cleaned up" by the
procedure unwind_, which helps to e f fec t nonlocal g o t o ' s . When
t h i s flag i s s e t , the value of cfh.ret__pb no longer descr ibes
the re turn point of the a c t i v a t i o n ; t h a t information i s
ava i l ab le in cfh.saved_cleanup_pb.

f lags .efh_present
w i l l always be 'O'b in a condit ion frame. I t i s used in a
regular c a l l frame to ind ica te t h a t an extended stack frame
header containing on-unit data i s p r e sen t .

f lags .user_proc
i d e n t i f i e s stack frames belonging to "non-support" procedures,
and hence wi l l be 'O'b in a condit ion frame.

flags.mbz
i s reserved and wi l l be 'O 'b .

f l a g s . f a u l t _ f r
wi l l always be ' 0 0 ' b in a condit ion frame.

root.mbz
is reserved and must be 'O'b.

root.seg_no
is the hardware-defined stack root segment number, and
indicates which segment contains the stack root for the stack
containing this fault frame.

ret pb
points to the next instruction to be executed following the
call to signl$ that caused this condition to be raised, unless
flags.cleanup_done is '1*b, in which case cfh.ret_pb will point
to a special code sequence used during stack unwinds, and
cfh.saved_cleanup_pb will contain the former value of
cfh.ret pb.

ret sb
is the hardware-defined stack base of the caller of signl$.
Thus, this value also points to the previous stack frame on the

f stack.

ret lb
is the hardware-defined linkage base of the caller of signl$.

Page 22

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

ret_keys
is the hardware-defined keys register of the caller of signl$.

after_pcl
i s the hardware-defined of fse t of the f i r s t argument pointer
following the c a l l to s ignl$ t h a t ra i sed t h i s condi t ion .

hdr_reserved
i s reserved for future expansion of the hardware-defined
PCL/CALF stack frame header, of which the t o t a l i t y of cfh i s a
fur ther extens ion.

owner_ptr
i s reserved to point to the ECB of the procedure tha t owns t h i s
s tack frame (usua l ly s i g n l $) .

c f lags .crawlout
i s M 'b i f t h i s condi t ion occurred in an inner r ing (a ring
number lower than the r ing in which the on-uni t i s execut ing) ,
but could not be adequately handled t h e r e ; e l s e i t i s 'O 'b .

cflags.continue_sw
i s used to ind ica te to the Condition Mechanism whether the
on-uni t t ha t was j u s t invoked (or any of i t s dynamic
descendants) wishes the backward scan of the stack for on-uni ts
for t h i s condit ion to continue upon the o n - u n i t ' s r e t u r n . The
system pr imi t ive cnsig$ i s used to request tha t
cf lags.continue_sw be turned on; user programs should NOT
attempt to se t i t d i r e c t l y . This switch i s cleared before each
on-uni t i s invoked (except ANY$ o n - u n i t s) .

c f 1 ag s . r e tur n__ok
i s ' 1 ' b i f the procedure tha t ra ised the condit ion i s wil l ing
for cont ro l to be returned to i t by means of the on-uni t simply
r e t u r n i n g . If 'O 'b , an attempt by an on-uni t for t h i s
condit ion to re turn wi l l cause the spec ia l condition
ILLEGAL_ONUNIT_RETURN$ to be s i g n a l l e d . Note, however, t ha t
the on-uni t may re tu rn r ega rd l e s s of the s t a t e of
c fh .c f l ags . re tu rn_ok i f cfh .cf lags .cont inue_sw has previously
been s e t by a c a l l to cnsig$. This i s because, in t h i s case,
the on-uni t r e tu rn does not cause a r e tu rn to the procedure
t ha t ra i sed the condi t ion , but ins tead causes a resumption of
the stack scan.

c f lags . inac t ion_ok
i s M 'b i f the procedure t ha t ra i sed the condit ion has
determined t h a t i t makes sense for an on-uni t for t h i s
condit ion to re turn without taking any c o r r e c t i v e ac t ion . If
•O'b, the on-uni t must take some co r r ec t i ve act ion before
r e tu rn ing , or e l se continued computation may be undefined.
Cflags. inact ion_ok wi l l never be M'b unless c f lags .return_ok
i s M'b as we l l . No user program should change the s t a t e of
t h i s or any o ther member of c f h . c f l a g s .

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

cflags.specifier
if M'b, indicates that this condition is a PL/I I/O condition
(PLIO condition) that requires a specifier pointer as well as a
condition name to completely identify it. This specifier is
usually a pointer to a PLIO file control block. The specifier
must be the first member of the info structure.

cflags.mbz
i s reserved for future expansion and must be 'O 'b .

version
identifies the version number (and hence the format) of this
structure, and will currently always be 1.

cond_name_ptr
is a pointer to the name (char(32) varying) of the condition
because of which the on-unit is being invoked.

ms_ptr
i s a pointer to a s t r u c t u r e which def ines the s t a t e of the CPU
at the time the condit ion occurred. In the case of hardware
f a u l t s , ms_ptr w i l l point to a Standard Faul t Frame Header
(f fh) . In the case of so f twa re - in i t i a t ed cond i t ions , ms_ptr
wi l l point to a cfh. The two cases can be d is t inguished by the
value of rasjtr -> cfh . flags . f au l t_ f r : i f 'OO'b, the software
case ob ta in s ; o therwise , the hardware case o b t a i n s .

info_ptr
is a pointer to an arbitrary structure containing auxiliary
information about the condition. If null, no information is
available. This pointer is copied directly from the
corresponding argument to signl$. If cflags.specifier is '1'b,
the format of this structure is partially constrained as
described above.

ms_len
i s the length in words of the s t r u c t u r e pointed to by ms_ptr.

info_len
i s the length in words of the s t r u c t u r e pointed to by info_pt r .

saved_cleanup_pb
i s val id only i f flags.cleanup_done i s M ' b , and i f val id i s
the former vaiue of cfh . re t_pb (which has been overwri t ten by
the nonlocal goto p rocessor) .

Notes

Any procedure attempting to interpret the data contained in a cfh
structure should be aware that, in the case of a crawlout, cfh.ms_ptr
describes the machine state at the time the condition was generated.

I: The stack history pertaining to that machine state has been lost as a
result of the crawlout.

Page 24

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

The machine state extant at the time the inner ring was entered is
available, and is pointed to by cfh.ret_sb. This machine state will be
a cfh or an ffh according to whether the inner ring was entered via a
procedure call (cfh) or a fault (ffh). The value of cfh.ret_sb ->
cfh.flags.fault_fr can be used to distinguish these cases.

In the case where a crawlout has not occurred, cfh.ms_ptr points to the
proper machine state, and no assumptions can be made concerning
cfh.ret_sb.

8.2 The Extended Stack Frame Header

Any procedure (or begin block) that desires to make one or more
on-units must reserve space in its stack frame header for an extension
that contains descriptive information about those on-units. This space
is allocated simply by including in such procedure the proper
declaration for the system primitive mkonu$.

The format of the stack frame header (with extension) is as shown
below.

del 1 sfh based, /* stack frame header */
2 flags,
3 backup_inh bit(1),
3 cond_fr bit(1),
3 cleanup^done bit(1),
3 efh_present bit(1),
3 user_proc b i t (1) ,
3 mbz b i t (9) ,
3 fau l t_ f r b i t (2) ,

2 roo t ,
3 mbz b i t (4) ,
•3 seg_no b i t (1 2) ,

2 ret_pb p t r ,
2 re t_sb p t r ,
2 r e t_ lb p t r ,
2 ret^_keys b i t (l 6) a l igned,
2 a f te r_pc l fixed bin ,
2.hdr_reserved(8) fixed b in ,
2 owner_ptr p t r ,
2 tempsc(8) fixed b in ,
2 onunit_ptr p t r ,
2 cleanup_onunit_ptr p t r ,
2 next_efh p t r ;

flags.backup_inh
i s examined only i f t h i s stack frame i s the "crawlout frame" on
an inner r ing s t ack , and a crawlout i s taking p lace . If M 'b ,
i t i n d i c a t e s t ha t sfh . re t_pb i s to be copied to the outer ring

^ a s - i s , - so t h a t the operat ion being aborted by the crawlout wil l
not be r e t r i e d . If f 0 ' b , s fh . re t_pb wi l l be se t to baserel

Page 25

<T

Speci f ica t ions for PRIMOS Condition Mechanism PE-T-468, Rev. 2

(s fh . r e t_pb , s fh . a f t e r_pc l - 2) , so t ha t the inner ring ca l l
may be r e t r i e d .

f lags.cond_fr
wi l l be ?0Tb unless the frame i s a condi t ion frame (and i s
hence described by the s t ruc tu re " c f h ") .

f lags .c leanup done
i s M^b i f the nonlocal goto processor has "cleaned up" t h i s
frame by invoking i t s CLEANUP$ on-uni t i f any, and r e se t t i ng
i t s s fh . re t_pb to point to a spec ia l code sequence to
accomplish the unwinding of t h i s stack frame. When ' 1 ' b , the
former value of s fh . re t_pb may be found in sfh.tempsc(7:8)
provided s fh . f l ags .e fh_presen t i s s e t .

f lags .efh_present
i s ' 1 ' b i f the extension port ion of t h i s frame header has been
va l id ly i n i t i a l i z e d . In the present implementation, t h i s
implies t ha t at l e a s t one c a l l to mkonu$ has been made, since
rakonu$ i s responsib le for performing the i n i t i a l i z a t i o n . If
! 0 f b , members of t h i s s t r uc tu r e below marked (EFH) are not
val id and may be used by the procedure for automatic s to rage .

flags .user_proc
i s ' 1 ' b i f t h i s stack frame belongs to a "non-support"
procedure; e l se i s 'O 'b . If f lags .user_proc i s ' 1 ' b ,
sfh.owner_ptr i s guaranteed to be v a l i d , and to point to an ecb
which i s followed by the name of the en t rypo in t .

flags.mbz
i s reserved and wi l l be 'O 'b .

f l ag s . f au l t _ f r
i s ' 00 ' b i f t h i s frame was created by a regular procedure c a l l ;
or MO' i f t h i s frame i s a f au l t frame (ffh) with val id saved
r e g i s t e r s ; or ' 01 'b if t h i s frame i s a f a u l t frame (ffh) in
which the r e g i s t e r s have not yet been saved.

root.mbz
i s reserved and must be 'O 'b .

root,seg_no
is the hardware-defined segment number of the stack root of the
stack of which this frame is a member.

ret pb

ret sb

points to the next instruction to be executed upon return from
this procedure.

contains the stack base belonging to the caller of this
procedure, and hence also points to the immediate predecessor
of this stack frame.

Page 26

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

ret_lb
contains the linkage base belonging to the caller of this
procedure.

ret_keys
contains the hardware-defined keys register belonging to the
caller of this procedure.

af ter_pcl
i s a value such t h a t basere l (s fh . r e t_pb , s fh . a f t e r_pc l) points
to two words beyond the procedure c a l l (PCL) i n s t r u c t i o n tha t
invoked t h i s procedure.

hdr_reserved (EFH)
i s reserved for future expansion of the hardware-defined PCL
stack frame header.

f* owner_ptr (EFH)
points to the Entry Control Block (ECB) of the procedure tha t
owns t h i s stack frame. This member must be i n i t i a l i z e d by the
cal led procedure i t s e l f , as the PCL i n s t r u c t i o n does not do i t .

tempsc (EFH)
i s a f ixed-pos i t ion block of e ight words to be used as
temporary s torage by procedures ca l led by t h i s procedure tha t
have a " s h o r t c a l l " invocation sequence and hence have no stack
frame of t h e i r own.

onunit_ptr (EFH)
points to the start of a chain of on-unit descriptor blocks for
this activation. If onunit_ptr is null, this activation has no
onunit blocks, except possibly for the condition CLEANUP$ as
described below.

cleanup_onunit_ptr (EFH)
If nonnull, this activation has an on-unit for the special
condition CLEANUPS, and cleanup_onunit_ptr points to the ECB
for that on-unit procedure (it does not point to an on-unit
descriptor block).

next_efh (EFH)
points to the first on a chain of additional stack frame
"header" blocks, so that these do not have to be allocated at
the beginning of the stack frame. Presently, next_efh will
always be null.

8.3 The Standard Fault Frame Header

Whenever a hardware fault occurs, the so-called Fault Interceptor
Module (FIM) is expected to push a stack frame with the standard format

C ' shown below. In addition, a register-save protocol must be followed by
all but ring three fault interceptors. The only inner ring FIM which

Page 27

/v*S

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

is permitted to violate these rules is the FIM for the Unimplemented
^Instruction fault.

The standard fault frame header structure is as follows:

del 1 ffh based, /* standard fault frame header */
2 flags,

3 backup_inh b i t (1) ,
3 cond_fr b i t (1) ,
3 cleanup_done bit(1),
3 efh_present b i t (1) ,
3 user_proc b i t (1) ,
3 mbz b i t (9) ,
3 fau l t_ f r b i t (2) ,

2 roo t ,
3 mbz b i t (4) ,
3 seg no b i t (1 2) ,

2 ret_pl) p t r ,
2 re t_sb p t r ,
2 r e t _ lb p t r ,
2 ret_keys b i t (16) a l igned,
2 faul t_ type fixed bin ,
2 fault_code fixed b in , .
2 faul t_addr p t r ,
2 hdr_reserved(7) fixed b in ,
2 r egs ,

f^ 3 save_mask b i t d 6) a l igned,
3 fac_1 (2) fixed b in(3D ,

' 3 fac_0(2) fixed b in (31) ,
3 genr(0:7) fixed b i n (3 D ,
3 xb_reg p t r ,

2 saved_cleanup_pb p t r ,
2 pad fixed bin;

flags.backup_inh
wi l l be ignored by the Condition Mechanism for f a u l t frames.

f lags.cond_fr
wi l l be 'O'b in a f au l t frame.

flags .cleanup_done
i s se t to ' 1'b by the stack unwinder when i t has "cleaned up"
t h i s f au l t frame. The old value of ffh.ret__pb has been placed
in ffh.saved__cleanup_pb, provided f l a g s . f a u l t _ f r i s MO'b.

flags .efh__present
wi l l be 'O'b in a f au l t frame, implying t ha t FIM's may not make
o n - u n i t s .

f l ags .use r proc
wi l l always be 'O'b in a fau l t frame.

Page 28

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

flags.mbz
i s reserved and wi l l be ' 0 T b .

f l ag s . f au l t _ f r
wi l l be MO'b i f t h i s frame i s indeed a standard format ffh and
the r e g i s t e r s have been va l id ly saved in f f h . r e g s ; e l se wi l l
be ! 0 1 f b .

root.seg_no
is the hardware-define stack root segment number.

ret pb

ret sb

ret lb

points to the next instruction to be executed following a
return from the fault. This will frequently also be the
instruction that caused the fault (the case for those faults
defined by the CPU reference manual as "backing up" the program
counter). If flags.cleanup_done is M'b, ret_pb will point to
a special "unwind" code sequence, and its former value will
have been saved if possible in ffh.saved_cleanup_pb.

contains the value of the SB register at the time of the fault,
and hence will usually point to the predecessor of this stack
f r am e.

contains the value of the LB register at the time of the fault.

ret_keys
contains the value of the KEYS register at the time of the
fault. This can be used to determine in what addressing mode
the fault was taken.

fault_type
is set by each FIM to the offset in the fault table
corresponding to the fault that occurred (e.g. a Process Fault
results in a fault_type of '04'b3). This datum cannot be
guaranteed valid, as it is not set indivisibly with the
hardware-defined header information. Since FIM's usually set
fault_type just after saving the registers, it is very unlikely
for fault_type to be invalid.

fault_code
is the hardware-defined fault code produced by the fault that
was taken.

fault__addr
i s the hardware-defined f au l t address produced by the fau l t
t ha t was taken.

hdr_reserved
i s reserved for future expansion of the PCL/CALF header.

Page 29

Specifications for PRIMOS Condition Mechanrsm PE-T-468, Rev. 2

regs
i s va l id i f f l a g s . f a u l t _ f r i s MO'b, and i f va l id contains the
saved machine r e g i s t e r s at the time of the f a u l t , in the format
produced by the RSAV i n s t r u c t i o n .

saved_cleanup_pb
i s val id only i f f l a g s . f a u l t _ f r i s MO'b and flags.cleanup_done
i s ' 1'b, and i f va l id contains the value t ha t was in ret_pb
before the l a t t e r was overwri t ten by the s tack unwinder.

pad
e x i s t s only to make the s ize of t h i s s t r u c t u r e an even number
of words.

8.4 The On-Unit Descriptor Block

Each on-uni t created by an ac t iva t ion i s described to the Condition
Mechanism by a desc r ip to r block (except for the spec ia l condition
CLEANUP$, which has no d e s c r i p t o r) . These de sc r ip to r blocks are
threaded together in a simple linked l i s t , the head of which i s pointed
to by s fh .onun i t_p t r . The format of an on-uni t desc r ip to r i s as
follows.

del 1 onub based, /* standard onunit block */ onub based, /* standard o
2
2
2

2
2
2

ecb_ptr ptr,
next ptr ptr,
flags,
3 not_reverted bit(1),
3 is_proc bit(1),
3 specify bit(1) ,
3 snap bit(1),
3 mbz bit(12),
pad fixed bin,
cond_name_ptr ptr,
specifier ptr;

ecb ptr
points to the Entry Control Block (ECB) which represents the
procedure or begin block to be invoked when this on-unit is
selected for invocation.

next_ptr
points to the next on-unit descriptor on the chain for this
activation, or else is null if at the end of the list.

, flags.not_reverted
is M'b if this on-unit is still valid and has not been
reverted, and is 'O^b if the on-unit has been reverted and is

f * to be ignored by the condition raising mechanism.

Page 30

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

flags.is_proc
is '1'b if this on-unit was made via a call to the primitive
mkonu$, and 'O'b if it was made via the PL/I <on statements

flags.specify
is '1'b if the condition name does not fully identify which
condition this on-unit block is to handle: onub.specifier is a
further qualifier in this case.

flags.snap
is '1'b if the <snap option> was specified in the PL/I <on
statement> that created this on-unit; else it is 'O'b.

flags.mbz
i s reserved and must be 'O 'b .

pad
is reserved and must be 0.

cond_name_ptr
is a pointer to a varying character string containing the
condition name for which this on-unit is a handler. This name
may be an incomplete specification if onub.flags.specify is
'1 'b.

spec i f i e r
i s val id only i f onub. f lags .spec i fy i s ' 1 ' b , and i f valid
q u a l i f i e s the condit ion name tha t i s pointed to by
onub.cond name_ptr. The primary use of onub .spec i f ie r i s for
PL/I I/O cond i t ions , in which the spec i f i ca t i on of the
condi t ion r equ i r e s both a name and a f i l e de sc r ip to r po in te r .

9 System-Defined Conditions

The following t ab le l i s t s a l l current standard system-defined condition
names, l i s t s the meaning of each, and descr ibes what information i s
ava i lab le from the cfh s t r u c t u r e produced by each cond i t ion .

In the de sc r ip t i ons below, "software" means t h a t the machine s t a t e
frame pointed to by cfh.ms_ptr i s a cfh frame; "hardware" means tha t
t h i s frame i s an ffh frame. The nota t ion " f fh . " and "cfh ." below
r e f e r s to the ffh or cfh t ha t i s pointed to by cfh.ms_ptr . The "info
s t r u c t u r e " s re fe r red to below are pointed to by c fh . i n fo_p t r .

Unless otherwise noted below, the system defau l t on-uni t for each
condition p r i n t s an appropr ia te d iagnos t ic message on the u s e r ' s
terminal , and c a l l s a new command l e v e l .

''<T

/"N

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

ERRRTN$
software not returnable

A non-ring-0 call to the ring 0 entry ERRRTN was made, as the
result of an ERRRTN SVC or a call to ERRPR$ with certain values of
the key.

No info structure is available.

The default on-unit for this condition simulates a call to EXIT;
hence, this condition should be signalled only while executing in a
Static Mode program.

ACCESS_VIOLATION$
hardware returnable

The process has attempted to perform a CPU instruction which has
violated the access control rules of the processor. No information
is readily available to differentiate between Write Violation, Read
Violation, Execute Vioaltion and Gate Violation.

ffh.fault_type has the value '44»b3.
ffh.fault_addr contains the virtual address the access to which is
improper.

ffh.ret_pb points to the instruction causing the violation.

No info structure is available.

POINTER_FAULT$
hardware returnable

The process has referenced through an indirect pointer (IP) whose
fault bit is on, but that pointer did not appear to be a valid
unsnapped dynamic link.

ffh.fault_type has the value '64'b3.
ffh.fault_addr points to the faulting IP.
ffh.ret_pb points to the faulting instruction.

No info structure is available.

LINKAGE_FAULT$
hardware returnable

The process has referenced through an indirect pointer (IP) which
is a valid unsnapped dynamic link, but the desired entry point
could not be found in any of the dynamic link tables.

ffh.fault_type has the value '64'b3.

Page 32

Speci f ica t ions for PRIMOS Condition Mechanism PE-T-468, Rev. 2

f fh . faul t_addr poin ts to the faul t ing IP.
f fh . re t_pb points to the fau l t ing i n s t r u c t i o n .

Info s t r u c t u r e :
del 1 info based,

2 entry_name char(32) var;

info,entry_name i s the name of the entry point t h a t could not be
found.

RO ERR$
software returnable

A ring-0 call to ERRPR$ or ERRRTN has been made, as the result of
some fatal error condition having been detected.

No info structure is available.

The default on-unit for this condition prints no diagnostic, but
calls a new command level.

ARITH$
hardware returnable

The process has encountered an Arithmetic Exception Fault.

ffh.fault_type has the value '50fb3.
ffh.fault_code is the hardware-defined Exception Code, and
partially identifies the cause of the fault.
ffh.ret_pb points to the next instruction to be executed upon
return. There is no way in general to obtain a pointer to the
faulting instruction.

No info structure is available.

The Static Mode default on-unit for this condition will simulate
Prime 300 fault handling for Arithmetic Exception if the
appropriate word of segment '4000 is non-zero (see the System
Architecture Guide for the exact location). If a Static Mode
program is not in execution when the fault occurs, or if the Prime
300 vector word is zero, the standard default handler for this
condition will resignal the ERROR condition with the appropriate
info structure.

SVC_INST$
hardware returnable

The process has executed an SVC instruction, but the system has not
been able to perform the operation. If the user is in "SVC
virtual" mode, all SVC instructions result in this condition being

Page 33

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

raised.

f f h . f a u l t _ t y p e has t h e va lue ' 1 4 ' b 3 .
f f h . r e t _ p b p o i n t s to t h e l o c a t i o n fo l lowing t h e SVC i n s t r u c t i o n .

Info s t r u c t u r e :
d e l 1 i n f o based ,

2 reason f ixed b i n ;

i n f o . r e a s o n has one of t h e fo l lowing v a l u e s : 1 (bad SVC o p e r a t i o n
code or bad a rgumentCs)) ; 2 (a l t e r n a t e r e t u r n needed but was
z e r o) ; or 3 (v i r t u a l SVC handl ing i s in e f f e c t in t h i s p r o c e s s) .

For t h e c a s e of v i r t u a l SVC's only (i n f o . r e a s o n code of 3) , the
S t a t i c Mode d e f a u l t o n - u n i t w i l l s i m u l a t e t he Prime 300 f a u l t
hand l ing for t h e SVC f a u l t i f t h e a p p r o p r i a t e word of segment '4000
i s n o n - z e r o ; i f t h i s word (see the System A r c h i t e c t u r e Guide for
t h e exac t l o c a t i o n) i s zero or i f t h e r e i s no S t a t i c Mode program
in e x e c u t i o n , t h e s t anda rd d e f a u l t hand l e r p r i n t s a d i a g n o s t i c and
c a l l s a new command l e v e l .

ILLEGAL_ONUNIT_RETURN$
sof tware not r e t u r n a b l e

An o n - u n i t for some c o n d i t i o n has a t t empted t o r e t u r n , when t h a t
has been d i s a l l owed by t h e procedure t h a t r a i s e d t h e c o n d i t i o n .

Info s t r u c t u r e : t h e s t a n d a r d - f o r m a t cfh t h a t d e s c r i b e s the
c o n d i t i o n whose o n - u n i t has i l l e g a l l y a t t empted to r e t u r n .

STACK 0VF$
hardware returnable

The process has overflowed one of its stack segments, but the
Condition Mechanism was able to locate a stack on which to raise
this condition.

ffh.fault__type has the value '54'b3.
segno (ffh.fault_addr) is the last stack segment in the chain of
stack segments of the stack that overflowed. It is this segment
that contains the zero extension pointer that caused the stack
overflow fault.
ffh.ret_pb points to the faulting instruction.

No info structure is available.

The Static Mode default on-unit will attempt to simulate the Prime
300 fault handling for Stack Overflow fault if the appropriate word
(see the System Architecture Guide) of segment '4000 is nonzero.
If this word is zero or if no Static Mode program is in execution,
the standard default handling occurs.

Page 34

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

lpQUIT$
hardware!software returnable

The user has actuated the quit button (Break Key or Control-P) on
his terminal.

If this is a hardware signal, then ffh.fault type has the value
,04'b3.
cfh.ret_pb or ffh.ret_pb points to the next instruction to be
executed in the faulting procedure.
No info structure is available.

The default on-unit flushes the input and output buffers of the
user's terminal, prints the message "QUIT." on the terminal, and
calls a new command level.

UII$.
hardware returnable

The process has executed an unrecognized instruction that
nevertheless caused an Unimplemented Instruction Fault, or else the
system UII handler detected an error in processing the valid UII.

The ffh that accompanies this condition is nonstandard in that
ffh.regs is not valid.

ffh.ret_pb points to the next instruction to be executed in the
faulting procedure.

CLEANUP$
software returnable

The nonlocal goto processor (unwind_) is in the process of invoking
on-units for the condition CLEANUP$ in each activation on the
stack, prior to actually unwinding the stack. The on-unit for this
condition should return, unless it encounters a fatal error. Calls
to cnsig$ from a CLEANUP$ on-unit have no effect.

No info structure is available.

LISTENER_ORDER$
software (varies)

This condition is used internally by the command loop to manage its
recursion. Users should NEVER make on-units for this condition,

(^ and user default on-units (ANY$) should always pass this condition
on by returning.

Page 35

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

The format of the info structure that accompanies this condition is
described in the writeup on the Primos Command Environment.

BAD NONLOCAL GOTO$
software not returnable

The nonlocal goto processor has been asked to transfer control to a
label whose display (stack) pointer is invalid, or whose target
activation has already been cleaned up. There is also a
possibility that the user's stack may have been overwritten.

Info structure:

del 1 info based,
2 target_label label,
2 ptr_to_nlg_call ptr,
2 caller_sb ptr;

info.target_label is the label to which the nonlocal goto was
attempted. info.ptr_to_nlg_call is a pointer to the call to pl1$nl
that requested this nonlocal goto. info,caller_sb is a pointer to
the activation (stack frame) requesting this nonlocal goto.

NONLOCAL_GOTO$
software returnable

This condition is signalled by the PL/I nonlocal goto processor
pl1$nl just prior to setting up the stack unwind (and hence prior
to the invocation of any CLEANUP$ on-units). This condition exists
to enable certain overseer software (such as the debugger) to be
informed that the nonlocal goto is occurring. The default handler
for this condition simply returns. When a procedure handling this
condition wishes to let the nonlocal goto occur, it should simply
return (without continue-to-signal set).

Info structure: same as for the BAD_NONLOCAL_GOTO$ condition.

ANY$
(pseudo-condition)

An activation's on-unit for ANY$ is invoked if that activation does
not have a specific on-unit for the condition that was raised. The
condition frame header for the condition ANY$ will describe the
original condition directly; there is no separate condition frame
header for the condition ANY$ unless ANY$ has been explicitly
raised by a call to signl$ (not a recommended practice).

Page 36

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

ILLEGAL_SEGNO$
hardware returnable

The process has referenced a virtual address whose segment number
is out of bounds.

ffh.fault type has the value '60^3.
ffh.re^pH points to the faulting instruction.
ffh.fault_addr is the virtual address that is in error.

No info structure is available.

NO_AVAIL_SEGS$
hardware returnable

The process has referenced a virtual address that refers to a
segment that has not yet been created. At the moment, the system
has no free page tables to assign to the segment. If .the on-unit
for this condition returns, the reference will be retried, with
some possibility of success if this or some other process has in
the meantime deleted a segment.

ffh.fault_type has the value '60^3.
ffh.ret_pb points to the faulting instruction.
ffh.fault_addr is the virtual address that is causing the attempted
segment creation.

No info structure is available.

NULL_POINTER$
hardware returnable

The process has referenced through an IP or base register whose
segment number is '7777?b3. This is considered to be a reference
through a null pointer, although user software should always employ
the single value 7777/0 for the null pointer.

ffh.fault type has the value '60^3.
ffh.ret_pT5 points to the faulting instruction.
ffh.fault_addr contains the null pointer through which a reference
was made.

No info structure i s available.

The default on-unit for th is condition resignals the ERROR
condition with the appropriate info s t ruc ture .

Page 37

/1SZ\

A^wWs

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

UNDEFINED_GATE$
software not returnable

The process has called an inner ring gate segment at an address
within the initialized portion of the gate segment, but there is no
legal gate at that address. This results from the fact that gate
segments must be padded to the next page boundary with "illegal"
gate entries.

No info structure is available.

ILLEGAL_INST$
hardware returnable

The process has attempted to execute an illegal instruction.

ffh.fault_type has the value '40'b3.
ffh.ret_pb points at the faulting instruction.

No info s t ruc ture i s a v a i l a b l e .

RESTRICTED_INST$
hardware returnable

t

The process has attempted to execute-an instruction whose use is
restricted to ring 0 procedures. Certain of these instructions (in
the I/O class) can be simulated by ring 0. An instruction which
causes this condition to be raised could not be simulated by this
mechanism.

ffh.fault_type has the value !00Tb3.' .
ffh.ret_pb points to the faulting instruction.

0UT_0F_B0UNDS$
hardware returnable

The process has referenced a page of some segment that has been
defined as not referencible in any ring (i.e. no main memory or
backing storage is allocated for that page, and allocation is not
permitted) .

ffh.fault_type has the value '10'b3.
ffh.ret_pb points at the faulting instruction.
ffh.fault_addr contains the offending virtual address.

No info structure is available.

Page 38

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

PAGE FAULT ERR$
hardware returnable

The process has encountered a page fault referencing a valid
virtual address, but due to a disk error, the page control
mechanism has not been able to load the page into main memory. If
the on-unit for this condition returns, the reference will be
retried, and there is some likelihood that the disk read will
succeed and the reference thus be completed.

ffh.fault_type has the value f10 * b3-
ffh.ret_pb points at the faulting instruction.
ffh.fault_addr contains the virtual address the page for which
cannot be retrieved.

No info structure is available.

EXIT$
software returnable

The process has made a call to the EXIT primitive, via a direct
call or an EXIT SVC. This condition should not be handled by user
programs, since it is used by certain Primos software to monitor
the execution of Static Mode programs.

No info structure is available.

The default on-unit for this condition simply returns.

ST0P$
sof tware not r e t u r n a b l e

The p roces s has executed a <s top s t a tement> in a
h i g h e r - l e v e l - l a n g u a g e program. This c o n d i t i o n should not be
handled by use r programs, as i t i s used by Prime sof tware to ensure
the proper o p e r a t i o n of t h e <s top s ta tement> in t h e v a r i o u s
l a n g u a g e s .

No info s t r u c t u r e i s a v a i l a b l e .

The d e f a u l t o n - u n i t for t h i s c o n d i t i o n performs a non loca l goto
back to t h e command p rocesso r which invoked t h e procedure which (or
one of t h e dynamic descendan t s of which) executed the <stop
s t a t e m e n t s

Page 39

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

PAUSE$
software returnable

The process has executed a <pause statement> in a Fortran program.
This condition should not be handled by user programs since it is
used by Prime software to ensure the proper operation of the
Fortran <pause statements

No info structure is available.

The default on-unit for this condition prints no diagnostic, but
calls a new command level.

REENTER$
software returnable

This condition is raised by" the Primos REN (REENTER) command, and
is used to reenter a subsystem that has been temporarily suspended
due to another condition (such as a quit signal). The details of
operation are left to the individual subsystems.

No info structure is available.

The default on-unit for this condition simply returns. The REN-
command will print a diagnostic if control returns to it after it
signals REENTER$, since this implies that there was no subsystem on
the stack willing to accept reentry.-

BAD PASSWORD$
software not returnable

This condition is raised by the ATCH$$ primitive when attempting to
attach to a passworded directory with an incorrect password. This
condition is signalled non-returnably in order to increase the work
function of machine-aided password penetration.

No info structure is available.

ENDFILE (f i l e)
sof tware (PL- I) r e t u r n a b l e

This c o n d i t i o n i s r a i s e d when an e n d - o f - f i l e i s encountered while
r ead ing a PL/I f i l e wi th PL/I I/O s t a t e m e n t s . The va lue of the
o n f i l e O b u i l t i n f u n c t i o n i d e n t i f i e s t h e f i l e i n v o l v e d .

^ The s t anda rd PL/I c o n d i t i o n in fo s t r u c t u r e i s provided (s e e be low) .
The va lue of in fo .oncode_va lue i s unde f ined , and i n f o . f i l e _ p t r

00\ identifies the file on which end-of-file occurred.

Page 40

Specifications fo-r PRIMOS Condition Mechanism PE-T-468, Rev. 2

The default on-unit for this condition prints a diagnostic and then
resignals the ERROR condition with an info.oncode value of 1044.

ENDPAGE (file)
software (PL-I) returnable

This condition is raised when end-of-page is encountered while
writing a PL/I file using PL/I I/O statements. The value of the
onfileO builtin function identifies the file on which the
end-of-page was encountered.

The standard PL/I condition info structure is provided (see below).
The value of info.oncode_value is undefined; info.file_ptr
identifies the file in question.

The default on-unit for this condition performs a "put skip" on the
file, and then returns.

KEY (file)
software (PL-I) returnable

The KEY condition is raised when reading or writing a keyed PL/I
file with PL/I I/O statements, and the supplied key does not exist
(read) or already exists (write). The value of the onfileO
builtin function identifies the file in question; the value of the
onkeyO builtin function contains the key in error.

The standard PL/I condition info structure is supplied. The value
of info.oncode_value is undefined; the value of info.file_ptr
identifies the file in question.

The default on-unit prints a diagnostic and resignals the ERROR
condition, with an info.oncode_value of 1045.

ERROR
software (PL-I) (varies)

This condition is a catch-all error condition defined in PL/I. The
default on-unit for most PL/I-defined conditions (such as KEY)
result in the ERROR condition being resignalled. Hence, the
programmer has the choice of handling a more- or less-specific case
of the condition.

Many I/O and conversion operations in PL/I can result in the
raising of the ERROR condition. The standard PL/I condition info
structure is supplied. Each distinct error has been assigned a
unique value of info.oncode_value. The info structure is:

if8* del 1 info based,
2 file_ptr ptr,

Page 41

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

2 info_struct_len fixed bin,
2 oncode_value fixed bin,
2 ret_addr ptr;

info.file_ptr
when valid, is a pointer to a PL/I file control block that
identifies the PL/I file in question in the error at hand.

info.info_struct_len
is the length, in words, of this structure. It identifies
both the version of the structure and the extent to which
any optional items at the end of the structure are filled
in. The present value is 6.

info.oncode_value
is the unique code assigned to this particular error case.
This integer is also the value of the oncodeO builtin
function when the latter is used in an on-unit invoked in
response to this error.

info.ret_addr
is a pointer to the instruction (statement) in the user's
program whose execution has caused this error.

The default on-unit for this condition prints a diagnostic
corresponding to the value of info,oncode_value, and calls a new
command level, unless the error is one of the arithmetic errors
that is handled "without comment" (such as underflow), in which
case the ' appropriate action is taken, and the on-unit returns
control to the point of interruption.

The specific values of info.oncode_value, and their corresponding
messages, are documented separately.

10 The Crawlout Mechanism

An event known as a crawlout occurs whenever the Condition Mechanism
reaches the end of an inner ring stack (a ring other than 3) without
finding a selectable on-unit for the condition that has been raised.
Note that a crawlout can occur even when the inner ring has an on-unit
for the condition, if that on-unit signals another condition, or if the
on-unit calls cnsig$ and returns, causing a resumption of the stack
scan.

The following terminology is used to describe the action of the
crawlout mechanism. The target ring is that ring from which the
present (inner) ring was entered. The condition frame is that (inner
ring) condition frame that describes the condition as it was raised in
the inner ring. The crawlout- frame is the topmost frame on the inner
ring stack; it is the crawlout frame whose return-conditions describe
the point in the outer ring from which this inner ring was entered.
Thus, we have target ring = ring (crawlout_frame -> sfh.ret_pb).

Page 42

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

The first step in performing a crawlout is to determine how large a
stack frame must be allocated on the target ring stack. This size is
just the sum of the size of the crawlout frame header, the machine
state header from the inner ring, the condition name, the info
structure if any, and a special auxiliary pointer area. The target
ring stack root segment number is obtained from a static table compiled
into crawl_.

The target ring stack frame has the following format:

del 1 orf based, /* outer ring frame */
2 crawlout_frame(ffh_size) fixed bin,
2 cofim, /* special data for crawlout FIM */

3 cond_name_ptr ptr,
3 ms_ptr ptr,
3 info_ptr ptr,
3 ms_len fixed bin,
3 info_len fixed bin,
3 action,

4 return_ok bit(1) unal,
4 inaction_ok bit(1) unal,
4 crawlout bit(1) unal,
4 specifier bit(1) unal,
4 mbz bit(12) unal,

2 cond_name char(32) var,
2 ms_frame(orf.ms_len) fixed bin, /* machine state */
2 info_struc(orf.info_len) fixed bin;

Since ffh_size (the size of a standard ffh) is a constant, orf.cofim is
at a known offset in orf. Hence, a crawlout FIM module may find it
without requiring that it be passed as an argument. The pointers and
lengths in orf .cofim identify the location and size of the other
members of orf, and are used by a crawlout FIM in order to re-invoke
signl$ in the outer ring.

If sufficient space for orf cannot be found in the target ring stack, a
fatal error ("crawlout stack overflow") occurs.

The remaining steps in the crawlout process are as follows (quits are
inhibited until the start of step (11)):

(1) The crawlout frame is copied to orf,crawlout_frame. If the
crawlout frame is an ffh that does not contain valid saved
registers, then crawl_ uses the "earliest valid registers" pointer
passed to it to locate and copy those saved registers into
o r f.c r awlo ut_fr am e.

(2) The condition name is copied to orf,cond_name. Space for a 32
character name is always allocated.

(3) The inner ring machine state (pointed to by cfh.ms_ptr) is copied
to orf.ms_frame. Because this data is always simply copied

Page 43

Specifications for PRIMOS Condition Mechanism • PE-T-468, Rev. 2

through, a multiring crawlout will carry the machine state at the
time the condition was originally raised.

(4) The info structure (if any) is copied to orf.info_struc.

(5) orf.action is set by copying return_ok, inaction_ok and specifier
from the inner ring cfh.cflags; orf.action.crawlout is set to
M'b. orf.action will be passed to signl$ by the crawlout FIM.

(6) Unless the crawlout frame's cfh. flags ,backup_inh is M'b or the
crawlout frame is an ffh, the ret_pb in orf.crawl_frame is backed
up to point at the PCL that entered the inner ring. In this way,
if signl$ returns, the call into the inner ring is re-executed
unless prohibited by the inner ring.

(7) ' The pointers and lengths in orf.cofim are set to identify the
appropriate members of the orf structure.

(8) The inner ring crawlout frame is then modified to make it appear
as though the inner ring was called by some procedure (the entry
value passed to crawl_) whose stack frame is orf.

(9) An unwind to this "activation" of step (8) is set up by a call to
unwind_.

(10) If we are crawling out from ring zero, unlkf$ is called to unlock
all ring zero locks.

V (11) Then crawl_ returns, causing the unwind to take place. Control
reappears in the target ring, with orf as the current stack frame,
and the procedure of step (8) in control.

(12) If the procedure of step (8) is the standard crawlout FIM crfim_,
it will simply call signl$ with the values in orf.cofim as
arguments. This raises the same condition in the target ring. If
signl$ returns, crfim_ reloads the registers if needed and simply
returns.

i?fP\

11 Internal Interfaces

WARNING: These internal interfaces are documented for completeness and
ease of understanding only; the interfaces are subject to change in
calling sequence, functionality, and existence.

11.1 CRAWL_

crawl_ Perform a Crawlout from an Inner Ring

del crawl_ entry (en t ry , p t r , p t r) ;

c a l l crawl_ (crawl_fim, crawl_frame, regs_frame);

Page 44

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

crawl_fim
is an entry value representing the procedure to which control
is to be passed when the crawlout is complete. This procedure
must satisfy certain restrictions described in Notes below.
The entry value must represent an external entry since no
display pointer will be passed. (Input)

crawl_frame
is a pointer to the topmost frame on the inner ring stack, to
be used as the "crawlout frame" as defined above. (Input)

regs_frame
i s a pointer to the e a r l i e s t frame on the cur ren t r ing stack
t ha t conta ins val id saved r e g i s t e r s . The value of regs_frame
wi l l not be used i f the crawlout frame i s not an ffh. Usually,
the value of crawl_frame and regs_frame wi l l be i d e n t i c a l ;
however, the r a i s e _ i n t e r n a l i n t e r f ace r e t u r n s the proper value
to pass as regs_frame. (Input)

The crawlout operat ion i s performed as described above. Control i s
t ransfer red to the procedure described by crawl_fim, in the environment
of the t a r g e t r i n g .

Remember tha t the c a l l e r of crawl_ must have a stack frame tha t i s a
condition frame; t h a t i s , the procedure c a l l i n g crawl_ cannot expect
to be able to overlay the cfh s t r u c t u r e with i t s own automatic s torage .
Mechanically, t h i s i s accomplished by including in the c a l l e r of crawl_
a dec la ra t ion of the form "del dummy_ entry () opt ions (s h o r t c a l l
(c fh_s ize))" as explained in the i n s e r t f i l e for the cfh s t r u c t u r e .

Res t r i c t i ons on Crawlout FIM's

A crawlout FIM w i l l not be given control via a regular hardware PCL
i n s t r u c t i o n . Therefore, i t must not matter which stack root i s used;
the procedure must be able to be entered in 64V addressing mode; the
procedure must expect no arguments; and the procedure must not use any
automatic s torage except the words comprising or f .cof im, unless i t
f i r s t extends i t s s tack frame. These r e s t r i c t i o n s w i l l probably make
i t impossible to wri te a crawlout FIM in PL/I .

11.2 CSTAK$

cstak$ Manipulate Concealed Stack (Ring 0)

del cstak$ entry (fixed bin, 1, 2 ptr, 2 bit(16) aligned,
2 fixed bin, 2 ptr,
bit(1) aligned, ptr);

call cstak$ (depth, cs_data, eog, pb_value);

Page 45

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

depth
is the offset in concealed stack (CS) frames from the most
recent entry of the CS, of the CS frame to read. The value of
depth must be between 0 and (maximum CS depth - 1), inclusive,
lest a fatal process error result. (Input)

cs_data
is a copy of the CS frame specified by depth. The ret_pb in
cs_data has the modified value if modification was requested.
(Output)

eog
is M'b if the CS entry read represents an "end of group" (EOG)
frame according to the definition of a CS group; else it is
'O'b. (Output)

pb_value
if null, is ignored and no modification of the CS occurs;
else, the ret_pb in the CS entry just read is modified to have
the value pb_value. (Input)

See the section, "Stack Unwind Protocol", for a detailed discussion of
the concealed stack.

11.3 FATAL_

fatal_ . Generate Fatal Process Error

del fatal_ entry (fixed bin) options (shortcall (4));

call fatal_ (error_code);

error_code
is a standard system error code, the corresponding message for
which will be printed on the user's terminal by ring zero as
the process' ring three environment is re-initialized. (Input)

Fatal_ is used to insulate the other interfaces of the condition
mechanism from detailed knowledge of how to generate a fatal process
error. The present fatal_ calls the ring zero gate fatal$ (which is at
a known location in the ring zero gate segment, and so requires no
linkage fault).

11.4 FNONU$

fnonu$ Find On-Unit in Given Frame

del fnonu$ entry (p t r , char(*) var , p t r , p t r , p t r)
r e tu rns (b i t (1) a l igned) ;

Page 46

S p e c i f i c a t i o n s for PRIMOS Condit ion Mechanism PE-T-468, Rev. 2

_ cond_found = fnonu$ (f r ame_p t r , cond i t ion_name,
v o n u n i t _ o r _ l a s t _ p t r , c a t c h _ a l l _ p t r , s p e c _ p t r) ;

frame_ptr
i s a p o i n t e r t o t he s t a c k frame of t h e a c t i v a t i o n whose l i s t of
o n - u n i t s i s t o be sea rched . A s t a c k frame t h a t has no extended
header w i l l be cons ide red to have an empty o n - u n i t l i s t .
(I n p u t)

condi t ion_name
i s t h e name of t he c o n d i t i o n whose o n - u n i t i s d e s i r e d . This
name may be q u a l i f i e d by s p e c _ p t r , as exp la ined be low. (Inpu t)

o n u n i t _ o r _ l a s t _ p t r
i s a p o i n t e r to t h e s p e c i f i c o n - u n i t d e s c r i p t o r block (i f

*
cond_found i s M ' b) , or e l s e i s a p o i n t e r t o t h e l a s t o n - u n i t

r d e s c r i p t o r b lock on t h a t a c t i v a t i o n ' s l i s t , making i t easy t o
t h r e a d a new o n - u n i t d e s c r i p t o r b lock onto t h e l i s t . I f the
a c t i v a t i o n ' s o n - u n i t l i s t i s empty, o n u n i t o r _ l a s t _ p t r w i l l be
s e t such t h a t us ing i t to s e t a n e x t - p o T n t e r w i l l s t i l l work
(i . e . t h e s t a c k frame header i s cons ide r ed to c o n t a i n a
"phantom" f i r s t d e s c r i p t o r on t h e o n - u n i t l i s t) .
O n u n i t _ o r _ l a s t _ p t r i s n u l l i f t h e r e i s no extended s t ack frame
header p r e s e n t , or i f t he a c t i v a t i o n i s "dead" by v i r t u e of i t s

ms sfh.f lags .cleanup_done being '1 'b. (Output)

catch_all_ptr
if valid, is a pointer to the activations's ANY$ on-unit
descriptor block. Catch_all_ptr is null if no ANY$ on-unit
exists in this activation. Catch_all_ptr is invalid if
cond_found is '1'b, since a specific on-unit has been found.
(Output)

A spec_ptr
v if non-null, this pointer qualifies condition_name, and is used

to search for on-units for PL/I builtin conditions that have
file control blocks associated with them. If spec_ptr is null,
it has no effect; otherwise, only an on-unit whose name
matches condition_name, and whose specifier pointer is valid
and equal to spec__ptr, will be reported as found. (Input)

cond_found
is '1'b if a specific on-unit for condition_name was found in
the activation, and 'O'b otherwise. (Output)

Note: fnonu$ cannot be used to find an activation's on-unit for the
special condition CLEANUP$. The item sfh.cleanup_onunit_ptr points

/ directly to the ECB for this on-unit, if any.

Page HI

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

p, 11.5 PREVSB_

prevsb_ Get Previous Stack Frame

del prevsb_ entry (ptr, bit(1) aligned, bit(1) aligned, fixed bin)
returns (ptr);

previous_frame = prevsb_ (current_frame, crawl_flag, fix_flag,
cs_depth);

current_frame
is a pointer to the stack frame whose immediate predecessor is
desired. (Input)

crawl_flag
j^ is M'b if the end of the stack has been reached and this is an
v inner ring stack (stack in a ring less than three); else it is

'O'b. (Output)

fix_flag
is '1*b if prevsb_ is to repair the stack discontinuity that
occurs when the Primos Command Loop invokes a so-called Static
Mode program, and is 'O'b if prevsb_ is merely to "hide" this
discontinuity instead of actually fixing it. This argument

#* should have the value '1'b only when called from Primos Command
Loop procedures that explicitly know when to perform this
function, and from the procedure.unwind_. (Input)

cs_depth
is the frame offset of the next frame on the Concealed Stack to
consider. The f irst call to prevsb_ should pass cs_depth equal
to 0. Thereafter, prevsb_ will update cs_depth as appropriate.
See the section, "Stack Unwind Protocol" for a description of

/PN how the Concealed Stack is used. (Input/Output)

previous_frame
is a pointer to the stack frame that is the immediate
predecessor of current_frame, except when the end of the stack
has been reached, in which case null is returned. (Output)

Note that prevsb_ has explicitly been given knowledge that enables i t
to make i t appear that a Static Mode program's stack is part of the
ring three stack (even though, physically, this may not be so).

11.6 RAISE_

raise_ Raise a Specific Condition

del raise_ entry (bit(1) aligned, ptr, ptr) ;

call raise_ (crawlout_needed, crawl_frame, regs_frame);

Page 48

Speci f ica t ions for PRIMOS Condition Mechanism PE-T-468, Rev. 2

crawlout_needed
i s M'b i f the scan of the stack for an on-uni t for the
condit ion has reached the end of the s t ack , ind ica t ing the need
for a crawlout . If 'O 'b , i n d i c a t e s t h a t the on-unit was
invoked and has now re turned . Procedure r a i s e _ does not check
c fh . c f l ags . r e tu rn_ok ; t h i s must be done by the c a l l e r of
r a i s e _ . (Output)

crawl_frame
poin ts to the topmost frame on the s tack of the cur ren t r i ng ,
when crawlout_needed i s M 'b . This value i s s u i t a b l e to be
passed to the crawl_ procedure to perform the crawlout.
(Output)

regs_frame
is a pointer to the earliest frame on the current ring stack
that contains valid saved registers. This value is suitable to
be passed to the entry crawl_ to effect a crawlout. (Output)

The stack frame of the caller of raise_ must be a condition frame and
must describe the condition to be signalled. Raise_ does not check to
be sure that its caller's frame meets these requirements. Raise_ will,
however, process cfh.cflags ,continue_sw, so that a single call to
raise_ is sufficient to invoke all on-units for the condition in that
ring that are logically required to be invoked.

11.7 UNWIND_

unwind_ Set Up Stack Unwind for Nonlocal Goto

del unwind_ entry (l abe l) r e tu rns (b i t (1) a l i gned) ;

unwind_ok = unwind_ (target_of_nl_goto) ;

targ e t_o f_nl_goto
is the label variable representing the statement and the
activation to which it is desired to transfer control. Note
that this mechanism cannot be used to transfer control into an
inner ring from an outer ring, although it can be used to
perform a crawlout to the most recent activation of the ring
that called the current ring. (Input)

unwind_ok
is M'b if the unwind has been properly set up, and 'O'b if the
label target_of_nl_goto has an invalid activation (stack)
pointer or if the stack in the current ring has been damaged,
or if the target activation has already been cleaned up.
(Output)

Page 49

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

Unwind_ performs only the manipulation of the stack necessary to
precipitate the unwind operation, and then returns to its caller. In
addition, however, unwind_ will invoke the CLEANUP$ on-unit, if any, in
every activation being aborted by the nonlocal goto. After each
CLEANUP$ on-unit (if any) returns, the activation's
sfh . flags .cleanup__done is set to '1'b.

When the caller of unwind itself returns, the stack will be unwound
and control will arrive aT the point specified by target_of_nl_goto.

12 Stack Unwind Protocol

Whenever it is necessary to unwind a stack (either partially or
completely), it must be realized that the Concealed Stack may actually
be a part of the process' stack history even though it is not
physically threaded into the stack. This occurs when a CALF
instruction encounters a fault (such as page fault, segment fault,
process abort, and so on) before the fault frame on the real stack has
been constructed. It is in fact possible for. there to be multiple such
instances (e.g. the CALF for pointer fault encounters a segment fault,
whose CALF in turn encounters a page fault).

When unwinding the regular stack, therefore, the Concealed Stack must
be unwound as well, if that is appropriate. The following algorithm is
used when contemplating a stack frame, to decide if that frame resulted
from such a faulted CALF.

First, we define a Concealed Stack Group (CSG) as the one or more CS
frames that intervene between two frames on the real stack. It can be
seen that all frames in a CSG are in a sense "caused" by the original
CALF instruction that did not complete. Therefore, when unwinding, the
next CSG must be unwound as a group, since there are no other
intervening real stack frames between members of the CSG.

The end of a CSG (called the "end of group" or EOG frame) has been
reached when that frame's ret_pb points to a higher ring, or does not
point to a CALF instruction.

The unwinding algorithm is as follows:

(1) Consider the next frame (working backward in time) on the stack,
starting with the caller of unwind_. If this is the son of the
target frame, invoke its CLEANUP$ on-unit if any, and goto step
(5).

(2) If this stack frame is not a fault frame, there can be no CSG
between it and the previous real stack frame, so clean this frame
up by invoking its CLEANUP$ on-unit if any, and setting its
sfh.ret_pb to point at a PRTN instruction. Goto (1).

(3) If ffh.ret_pb does not point at a CALF instruction, then clean up

Page 50

Speci f ica t ions for PRIMOS Condition Mechanism PE-T-468, Rev. 2

A the frame as in s tep (2) , and goto s tep (1) .

(4> Else se t f fh . re t_pb to point to the CALF_ entry po in t , which wi l l
simply remove the CSG from the CS and then execute a PRTN. Goto
s tep (1) .

(5) [This i s the son of the Target Frame] If t h i s frame i s not a
f au l t frame, then se t sfh . re t_pb to point at the t a r g e t l a b e l .
Exi t .

(6) If f fh . re t_pb does not point at a CALF i n s t r u c t i o n , or i f r ing
(f fh . re t_pb) i s g rea te r than the cur ren t r i n g , then r e se t
sfh.ret_pb as in s tep (5) , and e x i t . (No inner r ing CS e n t r i e s
ex i s t) .

(7) Else i f t h i s i s a crawlout, modify the son of the EOG frame in
t h i s CSG so t h a t i t s ret_pb points to the t a r g e t l a b e l . Then
point t h i s f fh . re t_pb at the entry point CALFT_, which wi l l remove
a l l but the EOG frame from the CS and t r ans fe r to the t a r g e t label
(which i s now contained in the son of the EOG frame) . Exi t .

(8) Else t h i s i s not a crawlout. Perform s tep (7) , except modify the
ret_pb of the EOG frame i t s e l f to point a t the t a r g e t l a b e l . This

f wi l l r e s u l t in the e n t i r e CSG being removed from the CS. Exi t .

m* Note" t ha t there i s cu r ren t ly no way for software other than the
*' unwinder to automat ica l ly t race ' the stack h i s t o r y through the concealed

s tack .

13 A PL/I Example

The hypothet ica l problem: provide a program with an on-uni t for the
condition POINTER$_FAULT tha t wil l fix the fau l t ing pointer to point at
a (possibly long- in teger) zero, and r e t r y the i n s t r u c t i o n t ha t fau l ted .

Solution:

problem: proc;

del mkonu$ entry (char(*) var, entry) options (shortcall (18)),
long__zero fixed bin(3D static init (0),
ptr_fault__ chard 4) var static init ('P0INTER_FAULT$ •) ;

$INSERT dcl_for_ffh
$INSERT dcl_for_cfh

/* Set up the on-unit for POINTER_FAULT$. */

call mkonu$ (ptr_fault_, ptr__handler);

/* Now perform whatever computations might pointer-fault. */

Page 51

Specifications for PRIMOS Condition Mechanism PE-T-468, Rev. 2

/* Having done them, return. */

return;

/* On-unit for POINTER_FAULT$. Correct the faulting pointer to
point at long_zero, and restart at the point of interruption. */

ptr_handler: proc (cp);

del cp ptr; /* pointer to cfh */

del msp ptr; /* local copy of machine state ptr */
del based_ptr ptr based;

msp = cp -> cfh.ms_ptr;
msp -> ffh.fault_addr -> based_ptr = addr (long_zero);

/* The above uses the hardware-saved pointer to the faulting pointer,
which is found in the machine-state ffh, to reset the bad pointer.
We then simply return, causing the instruction to be re-executed. *

/

return;

end; /* ptr_handler */

end; /* problem */

14 A Fortran Example

The hypothetical problem: provide a subroutine A with a handler for
the QUIT$ condition, which will set a particular common variable QUITX
to 1 and return to the point of interruption. Presumably, at some
later time, A or some other routine in the subsystem would interrogate
QUITX to see if a quit happened.

Solution:

SUBROUTINE A
C

EXTERNAL B /* ON-UNIT FOR QUIT$
STACK HEADER 34
COMMON /COM/ AA, BB, QUITX, CC, DD
INTEGER*2 AA, BB, QUITX, CC, DD

C
C.. SET UP THE ON-UNIT.
C

CALL MKON$F (,QUIT$I, 5, B)
C
C . COMPUTE UNDER PROTECTION OF B.
C
C

Par

Specifications for PRIMOS Condition Mechanism PE-T-^68, Rev. 2

C
C . INTERROGATE QUITX TO SEE IF WE GOT A QUIT.
C •

IF (QUITX .NE. 1) GOTO 1000 /* NO QUIT
C
C . A QUIT OCCURRED, DO SOMETHING ABOUT IT.
C
C
c
1000 CONTINUE

RETURN
END

C

C

SUBROUTINE B (CP) /» ON-UNIT FOR QUIT$

INTEGER**! CP /* PTR TO CONDITION FRAME

COMMON /COM/ AA, BB, QUITX, CC, DD
INTEGER*2 AA, BB, QUITX, CC, DD

QUITX = 1 /* SET QUIT-SEEN FLAG
RETURN /» AND RETURN TO POINT OF INTERRUPT
END

	Cover Page
	1
	Table of Contents
	2
	Introduction to the Condition Mechanism
	On-Units
	3
	Invocation of On-Units
	Possible Actions of an On-Unit
	4
	Using the Condition Mechanism from Fortran
	5
	6
	Default On-Units and Cleanup On-Units
	7
	System Primitive Interfaces to the Condition Mechanism
	8
	-- signl$
	9
	10
	-- mkonu$
	11
	-- rvonu$
	12
	-- onsig$
	13
	-- mkon$f
	14
	15
	-- rvon$f
	16
	-- sgnl$f
	17
	18
	-- mklb$f
	19
	-- pl1$nl
	20
	Data Structure Formats
	-- The Condition Frame Header
	21
	22
	23
	24
	-- The Extended Stack Frame Header
	25
	26
	-- The Standard Fault Frame Header
	27
	28
	29
	-- The On-Unit Descriptor Block
	30
	System-Defined Conditions
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	The Crawlout Mechanism
	42
	43
	Internal Interfaces
	-- CRAWL_
	44
	-- CSTAK$
	45
	-- FNONU$
	46
	47
	-- PREVSB_
	-- RAISE_
	48
	-- UNWIND
	49
	Stack Unwind Protocol
	50
	A PL/I Example
	51
	A Fortran Example
	52
	53

